• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

Shimizu, Kenichi, Sugaya, Satoshi, Kakimoto, Shiro, Katagiri, Makoto, Satsuma, Atsushi 02 1900 (has links)
No description available.
2

Synthesis, Fabrication and Surface Modification of Nanocrystalline Nickel Oxide for Electronic Gas Sensors

Soleimanpour, Amir Masoud 22 August 2013 (has links)
No description available.
3

Development of ozone and ammonia gas sensors on flexible substrate / Développement de capteurs d'ozone et d'ammoniac sur support souple

Acuautla Meneses, Monica Isela 19 September 2014 (has links)
L'émergence des nouvelles applications dans le domaine de la micro et nanotechnologie requière de faibles coûts de fabrication et la caractérisation de dispositifs électroniques ayant des propriétés telles que la flexibilité, la portabilité, la légèreté, et des matériaux de faibles coûts. Les méthodes traditionnelles de fabrication impliquent de longues étapes de production, et des procédés de fabrication impliquant des étapes avec des produits chimiques. Le but de cette thèse est d'étudier la conception et la caractérisation de capteurs d'ammoniac et d'ozone sur support souple fabriqués par des processus de photolithographie et de gravure laser. Le support flexible est composé de Kapton avec des électrodes interdigitées de Ti/Pt pour la détection de gaz et un microchauffage. Les motifs du circuit ont été réalisés par photolithographie et gravure laser. L'utilisation de gravure laser sur support souple permet de réduire les coûts liés au temps de fabrication, aussi représente une excellente alternative aux processus chimiques. Des nanoparticles de ZnO déposées par gouttes ont été utilisées comme matériaux sensibles en raison de leurs excellentes propriétés dans la détection de gaz. Les conditions de détection de gaz ont été étudiées pour différentes concentrations d'ozone et d'ammoniac. Afin de tester une méthode de dépôt utilisée dans la production industrielle à grande échelle, un dépôt par spray ultrasonique a été effectué. Les capteurs réalisés montrent une large gamme de détection de 5 ppb à 500 ppb à 200 °C pour l'ozone et de 5 ppm à 100 ppm à 300 °C pour l'ammoniac avec une bonne reproductibilité, stabilité et de rapides temps de réponse et de retourn. / Nowadays the emerging of new applications in the micro and nanotechnology field required to reduce fabrication costand to improve electronic devices with properties such as flexibility, portability, lightweight, and low cost. Traditional methods involve expensive and long production steps, and chemical vapor deposition. The purpose of this work is to present the conception and characterization of flexible ammonia and ozone sensors fabricated by photolithography and laser ablation processes. The flexible platform is composed of Kapton substrate with interdigitated Ti/Pt electrodes for gas detection and a micro-heater device. The circuit patterns were realized by photolithography and laser ablation. Photolithography is a well-known and reliable patterning process used on rigid substrate. The application of laser ablation process not only reduces fabrication time, but also represents an excellent viable alternative instead of chemical processes. ZnO thin films deposited by drop coating have been used as sensitive materials due to their excellent properties in the gas detection. The gas sensing condition and the performances of the devices are investigated for ozone and ammonia at different gas concentrations and different thin film thicknesses. In order to test a deposit methodology used in large scale industrial production, an ultrasonic spray deposition was done. The sensor provides a wide range of detection from 5 ppb to 500 ppb for ozone and from 5 ppm to 100 ppm for ammonia. Their best sensibilities were obtained at 200°C for ozone and 300 °C for ammoniac with good repeatability, stability and fast response/recovery time.
4

Novel applications of optical analytical techniques

Seetohul, L. Nitin January 2009 (has links)
Novel applications of optical analytical techniques have been demonstrated in three general areas, namely application of broadband cavity enhanced absorption spectroscopy (BBCEAS) to the detection of liquid phase analytes, the use of total luminescence spectroscopy to discriminate between different type of teas and the development of an optical sensor to detect ammonia gas, based on the fluorescence quenching of a dye immobilised in a sol gel matrix. A simple BBCEAS setup has been developed with a view to perform sensitive visible wavelength measurements on liquid phase solutions. In the present work a simple low-cost experimental setup has been demonstrated for the measurement of the visible spectra of representative liquid-phase analytes in a 2 mm quartz cuvette placed at normal incidence to the cavity mirrors. Measurements on Ho3+ and sudan black with a white LED and the R ≥ 0.99 mirrors covered a broad wavelength range (~250 nm) and represents the largest wavelength range covered to date in a single BBCEAS experiment. The sensitivity of the technique as determined by the best αmin value was 5.1 x 10-5 cm-1 and was obtained using the R ≥ 0.99 mirrors. The best limit of detection (LOD) for the strong absorber brilliant blue-R, was approximately 620 pM. The optical setup was then optimised for the application of BBCEAS detection to an HPLC system. A 1 cm pathlength HPLC cell with a nominal volume of 70 ml was used in this study. The cavity was formed by two R ≥ 0.99 plano-concave mirrors with a bandwidth of ~ 420 – 670 nm. Two analytes rhodamine 6G and rhodamine B were chosen for separation by HPLC, as they were chemically similar species with distinctive visible spectra and would co-elute in an isocratic separation. The lowest value of amin obtained was 1.9 x 10-5 cm-1. The most significant advantage of the HPLC-BBCEAS study over previous studies arose from the recording of the absorption spectrum over a range of wavelengths. It was demonstrated that the spectral data collected could be represented as a contour plot which was useful in visualising analytes which nearly co-eluted. The LOD values for the two analytes studied indicated that the developed HPLC-BBCEAS setup was between 54 and 77 times more sensitive than a commercial HPLC system. For improved sensitivity and lower detection limits the low cost BBCEAS setup was used with a significantly longer 20 cm pathlength cell where the mirrors were in direct contact with the liquid phase analyte. This also reduced interface losses. The experiments were carried out using both R ³ 0.99 and R ³ 0.999 mirrors. The lowest αmin value obtained in this study was 2.8 x 10-7 cm-1 which is the lowest reported value to date for a liquid phase measurement, making this study the most sensitive liquid phase absorption measurement reported. The lowest LOD recorded was 4.6 pM, and was obtained for methylene blue with the R ³ 0.999 mirrors. A novel application of total luminescence spectroscopy to discriminate between different types of teas objectively was also investigated. A pattern recognition technique based on principal component analysis (PCA) was applied to the data collected and resulted in discrimination between both geographically similar and dissimilar teas. This work has shown the potential of fluorescence spectroscopy to distinguish between seven types of teas from Africa, India, Sri Lanka and Japan. Geographically similar black teas from 15 different plantation estates in Sri Lanka were also studied. The visualisation technique allowed the separation of all 11 types of teas when the first two principal components were utilised. The final part of the thesis describes the development of an optical sensor for the detection of ammonia gas. The operation of the sensor depended on the fluorescence quenching of the dye 9 amino acridine hydrochloride (9 AAH) immobilised in a sol gel matrix. It was also shown that the sensor response was not affected by the presence of acidic gases such as HCl and SO2. The final version of the sensor made use of dual channel monitoring to improve the sensitivity of the sensor. Measurements using diluted mixtures of ammonia gas in the range 5 -70 ppm showed that the response of the sensor was nonlinear, with the sensitivity increasing at lower concentrations. The measurement of the baseline noise allowed the LOD to be estimated at ~400 ppb.

Page generated in 0.0668 seconds