• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Croissance et propriétés des couches minces de silicium hydrogéné déposées au voisinage de la zone de transition amorphe nanocristalline par PECVD à partir d’un plasma de silane dilué dans un gaz d’argon. / Growth and properties of hydrogenated silicon thin films deposited near the nanocrystalline amorphous transition region from Argon diluted silane plasma.

Amrani, Rachid 06 December 2013 (has links)
L'objectif de cette thèse est de contribuer à la compréhension des propriétés optoélectroniques des couches minces de silicium hydrogénée, une étude détaillée a été effectuée. Les échantillons ont été déposés par 13,56 MHz PECVD (Plasma Enhanced Chemical Vapor Deposition) à partir du silane dilué avec l'argon (96 %). La température du substrat a été fixée à 200 °C. L'influence des paramètres de dépôts sur les propriétés optiques des échantillons a été étudiée par spectroscopie UV -Vis -NIR. L'évolution structurelle a été étudiée par spectroscopie Raman, TEM, AFM, FTIR et par diffraction des rayons X (XRD). La déposition des couches intrinsèques a été faite dans cette étude dans le but d'obtenir la transition de l'état amorphe à la phase cristalline des matériaux. La pression de dépôt varie de 400 mTorr à 1400 mTorr et la puissance de 50 à 250 W. La caractérisation structurelle montre qu'au-delà de 160 W, nous avons observé une transition amorphe nanocristalline, avec une augmentation de la fraction cristalline en augmentant la puissance et la pression. Les couches sont déposées avec des vitesses de dépôt relativement élevées (3.5 - 8 Å/s), ce qui est très souhaitable pour la fabrication des cellules photovoltaïques. La vitesse de dépôt augmente avec l'augmentation de la puissance et de la pression. Des différentes fractions cristallines et tailles des cristallites ont été obtenues en contrôlant la pression et la puissance. Ces modifications de structure ont été corrélées avec la variation des propriétés optiques et électriques des couches minces déposées. / The main objective of this thesis is to contribute to the understanding of the optoelectronics properties of hydrogenated nanocrystalline silicon thin films, a detailed study has been conducted. The samples were deposited by 13.56 MHz PECVD (Plasma Enhanced Chemical Vapor Deposition) of silane argon mixture. The argon dilution of silane for all samples studied was 96% by volume. The substrate temperature was fixed at 200 °C. The influence of depositions parameters on optical proprieties of samples was studied by UV-Vis-NIR spectroscopy. The structural evolution was studied by Raman spectroscopy, TEM, AFM, FTIR and X-ray diffraction (XRD). Intrinsic-layer samples depositions were made in this experiment in order to obtain the transition from the amorphous to crystalline phase materials. The deposition pressure varied from 400 mTorr to 1400 mTorr and the RF power from 50 to 250 W. The structural evolution studies show that beyond 160 W, we observed an amorphous-nanocrystalline transition, with an increase in crystalline fraction by increasing RF power and working pressure. Films near the amorphous to nanocrystalline transition region are grown at reasonably high deposition rates (3.5- 8 Å/s), which are highly desirable for the fabrication of cost effective devices. The deposition rate increases with increasing RF power and process pressure. Different crystalline fractions and crystallite size can be achieved by controlling the process pressure and RF power. These structural changes are well correlated to the variation of optical and electrical proprieties of the thin films.

Page generated in 0.1471 seconds