• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microgels as drug carriers : Relationship between release kinetics and self-aggregation of the amphiphilic drugs adiphenine, pavatrine and diphenhydramine.

Ali Mohsen, Lobna January 2021 (has links)
Abstract There has been great interest in microgels as drug carriers within the pharmaceutical industry. This includes the use of amphiphilic drugs for treating conditions such as depression, allergies, and cancer. By loading adiphenine (ADP), pavatrine (PVT), and diphenhydramine (DPH) into macrogels and observing the release, this study seeks to investigate how amphiphilic drugs can be released from microgels. There is also an interest in how aggregation behavior may vary depending on the structural components. This study utilized small angle x-ray scattering (SAXS) along with UV analysis and the measuring of the binding isotherm to investigate micelle aggregation and aggregation number. Two of the drugs adiphenine and pavatrine, have similar structures with only one bond that differentiated them. The difference in rigidity provided different results in SAXS. Adiphenine has an aggregation number of 12, diphenhydramine has a number of 13, and pavatrine has a number of 37. In contrast to pavatrine, which did not exhibit a correlation peak, adiphenine and diphenhydramine showed correlation peaks. This indicates that none of them had an ordered phase structure but pavatrine displayed an even more disordered phase structure. Nevertheless, all three drugs were in equilibrium, and so a difference between adiphenine and pavatrine could be clearly distinguished. There were significant divergences between pavatrine and adiphenine despite not being able to determine binding isotherms for all three drugs. Based on this, they should be less stable than diphenhydramine. They have an ester linkage, while diphenhydramine doesn't. As a result, it was not possible to confirm how self-aggregation of adiphenine, pavatrine, and diphenhydramine impacts drug release. Despite this, differences in the rigidity of the structural form may lead amphiphilic drugs to exhibit different behaviour in gels. Keywords: Amphiphilic drugs, small angle x-ray scattering, macrogels, binding isotherm, CMC, self-aggregation, phase structure, micelles.

Page generated in 0.0577 seconds