Spelling suggestions: "subject:"amplificadores (electrónica)"" "subject:"amplificadores (électrónica)""
1 |
Amplificadores paramétricos de onda viajera e inductancia cinéticaValenzuela Henríquez, Daniel Alejandro January 2018 (has links)
Ingeniero Civil Eléctrico / Con la motivación para que el lector pueda tener una idea clara de como funciona en general el TKIP, el capítulo 2 se centra en explicar los procesos por el cual se tiene que pasar para lograr amplificación, dividiendo la explicación en tres partes: Onda viajera (Travelling-wave), inductancia cinética (Kinetic inductance) y paramétrico(parametric). Se describe en detalle cada proceso y la teoría necesaria para entender cada etapa. Para el propósito de darle al lector un mejor entendimiento del dispositivo, se empezará a explicar desde la parte 3 hasta la 1.
La parte paramétrica o Parametric explica los conceptos de Four-Wave-Mixing. Se explican las relaciones que gobiernan la amplificación y cuales son sus condiciones. Se concluye que una condición fundamental es realizar el efecto en un sistema no lineal.
La etapa Kinetic Inductance o inductancia cinética, se centra la teoría BSC para explicar los efectos principales que se necesitan para entender este tipo de aplicaciones. Se dan algunos ejemplos que enlazan esta teoría con los amplificadores paramétricos (paramp).
En la tercera parte Travelling-wave u Onda viajera explican el fenómeno de dispersión. Se mencionan fenómenos que se observen en la vida cotidiana, para luego indicar la importancia de este en el proceso de amplificación. Finalmente se concluye cuales son los requerimientos para lograr la dispersión deseada y de que forma se pueden cumplir.
Además de estos procesos, se tiene uno adicional que consiste en el diseño de una línea microstrip invertida utilizando un material superconductor, para ello primero se replican distintos resultados de artículos relacionados, para luego obtener una microstrip para distintas permitividades relativas y tangentes de pérdidas. Finalmente se obtienen las medidas necesarias para obtener una impedancia característica de 50 Ohm del modelo mencionado.
En en capítulo 3 Implementación se combina la teoría con simulaciones, expresando la relación de dispersión ideal para un problema general y comparándola con diseños específicos. Además se detallará los resultados de la amplificación obtenida por cada filtro. Finalmente se mencionan las dificultades que llevaron a cada proceso, describiendo su posterior solución.
|
2 |
Development of modular components for radio astronomical receivers in the bands Q (30-50 GHZ) and W (80-110 GHZ)Jarufe Troncoso, Claudio Felipe January 2018 (has links)
Doctor en Ingeniería Eléctrica / Este trabajo presenta el diseño, construcción y caracterización de dispositivos para receptores radioastronómicos en las bandas Q (30-50GHz) y W (80-110GHz). Por un lado, el dispositivo desarrollado para la banda Q es de interés para la banda 1 del telescopio argentino-brasileño LLAMA (Long Latin American Array). Por otro lado, los componentes de banda W pueden ser utilizados en la banda 3 de LLAMA o en posibles mejoras para el Telescopio Austral de Ondas Milimétricas (SMWT) que es mantenido por nuestro grupo.
Para la banda Q, se diseñó y construyó un amplificador de bajo ruido utilizando un esquema hibrido de integración. Se integró un transistor de alta movilidad electrónica (HEMT) y un circuito integrado monolítico de microondas (MMIC) obtenido comercialmente. Con este diseño una temperatura de ruido inferior a 20 K y una ganancia superior a 30 dB pueden ser obtenidas.
En la banda W se desarrollaron varios componentes. En primer lugar, se empaquetaron
amplificadores comerciales MMIC de las compañías OMMIC y HRL. Al ser medidos a 15K estos amplificadores de bajo ruido alcanzaron temperaturas de ruido menores a 100K y ganancias superiores a 17 dB. Dada su disponibilidad comercial se determinó que son apropiados para ser utilizados como segundo amplificador en un receptor. Segundo, utilizando diodos Schottky comerciales, se fabricaron mezcladores sub-armónicos que cubren la banda W extendida. Las técnicas de desarrollo han variado desde el uso de componentes discretos hasta el diseño de MMICs para reducir el tamaño de los mezcladores. Los componentes mencionados previamente han sido ensamblados en un módulo compacto que puede ser utilizado en la etapa de mezcla de frecuencias. Este módulo posee una temperatura de ruido menor a 800 K y ganancia superior a 2dB a temperatura ambiente. Finalmente, se construyó una antena de ranura cuyo perfil ha sido optimizado para mejorar sus principales características (reflexiones, ancho de banda, polarización cruzada y simetría de haz). Entre las antenas de su tipo, esta es la única que posee un perfil optimizado lo que ha permitido obtener el mejor funcionamiento alcanzado hasta el momento. / Este trabajo ha sido parcialmente financiado por el Proyecto Gemini-Conicyt 32130023, Centro Basal de Astronomía y Tecnologías Afines (CATA), "Programa de Formación de Capital Humano Avanzado" de CONICYT y el Comité Mixto ESO-Chile
|
Page generated in 0.0966 seconds