Spelling suggestions: "subject:"amplification dynamique"" "subject:"implification dynamique""
1 |
New capacity design methods for seismic design of ductile RC shear walls / Nouvelles méthodes de dimensionnement à la capacité pour la conception parasismique de murs ductiles en béton arméBoivin, Yannick January 2012 (has links)
In order to produce economical seismic designs, the modern building codes allow reducing seismic design forces if the seismic force resisting system (SFRS) of a building is designed to develop an identified mechanism of inelastic lateral response. The capacity design aims to ensure that the inelastic mechanism develops as intended and no undesirable failure modes occur. Since the 1984 edition, this design approach is implemented in the Canadian Standards Association (CSA) standard A23.3 for seismic design of ductile reinforced concrete (RC) shear walls with the objectives of providing sufficient flexural and shear strength to confine the mechanism to the identified plastic hinges and ensure a flexure-governed inelastic lateral response of the walls. For a single regular wall, the implemented capacity design requirements assume a lateral deformation of the wall in its fundamental lateral mode of vibration, and hence aim to constrain the inelastic mechanism at the expected base plastic hinge. This design is referred to as single plastic-hinge (SPH) design. Despite these requirements, CSA standard A23.3 did not prescribe, prior to the 2004 edition, any methods for determining capacity design envelopes for flexural and shear strength design of ductile RC shear walls over their height. Only its Commentary recommended such methods. However, various studies suggested, mainly for cantilever walls, that the application of these methods could result in multistorey wall designs experiencing the formation of unintended plastic hinges at the upper storeys and a high potential of undesirable shear failure, principally at the wall base, jeopardizing the intended ductile flexural response of the wall. These design issues result from an underestimation of dynamic amplification due to lateral modes of vibration higher than the fundamental lateral mode. The 2004 CSA standard A23.3 now prescribes capacity design methods intending in part to address these design issues. Although these methods have not been assessed yet, their formulation appears deficient in accounting for the higher mode amplification effects. In this regard, this research project proposes for CSA standard A23.3 new capacity design methods, considering these effects, for a SPH design of regular ductile RC cantilever walls used as SFRS for multistorey buildings. In order to achieve this objective, first a seismic performance assessment of a realistic ductile shear wall system designed according to the 2004 CSA standard A23.3 is carried out to assess the prescribed capacity design methods. Secondly, an extensive parametric study based on sophisticated inelastic dynamic simulations is conducted to investigate the influence of various parameters on the higher mode amplification effects, and hence on the seismic force demand, in regular ductile RC cantilever walls designed with the 2004 CSA standard A23.3. Thirdly, a review of various capacity design methods proposed in the current literature and recommended by design codes for a SPH design is performed. From the outcomes of this review and the parametric study, new capacity design methods are proposed and a discussion on the limitations of these methods and on their applicability to various wall systems is presented.
|
2 |
Investigation of the higher mode effects on the dynamic behaviour of reinforced concrete shear walls through a pseudo-dynamic hybrid test / Étude de l’effet des modes supérieurs sur le comportement dynamique des murs de refend en béton armé à l’aide d’un essai pseudo-dynamique avec sous-structureFatemi, Hassan January 2017 (has links)
La plupart des bâtiments de moyenne et grande hauteur en béton armé sont munis de murs
de refend ductiles afin résister aux charges latérales dues au vent et aux séismes. Les murs de
refend ductiles sont conçus selon des règles conception stricts. Ces murs sont généralement
conçus de façon à forcer la formation d’une rotule plastique à leur base dans l’éventualité d’un
séismemajeur. Lors de la conception d’un mur, l’enveloppe des moments fléchissants ainsi que
l’enveloppe des efforts tranchants dans la portion du mur situé au-dessus de la rotule plastique
sont basés sur la résistance probable en flexion du mur dans la région de la rotule plastique.
Plusieurs études sur les murs de refend conçus selon cette philosophie de conception on fait le
constat que l’effort tranchant maximum dans un mur peut être sous-estimé lors d’un séisme,
et que des rotules plastiques peuvent également se former à d’autres endroits qu’à la base
du mur, ce qui constitue un mécanisme de ruine indésirable. Ces effets sont principalement
attribuables à la contribution des modes supérieures à la réponse dynamique globale des bâtiments
lors d’un séisme. L’effet des modes supérieurs est particulièrement important dans les
bâtiments élancés de grande hauteur ayant une période propre de vibration longue.
L’essai pseudo-dynamique avec sous-structure est uneméthode efficace et économique d’évaluer
expérimentalement l’effet des modes supérieurs sur le comportement sismique des murs de
refend dans les bâtiments. Lors de tels essais, comme la masse du bâtiment est modélisée
numériquement, ceci permet de tester des structures à de relativement grandes échelles sans
avoir à combattremécaniquement les forces d’inerties générées lors d’un séisme. Dans le cadre
de la présente étude, la portion constituant la base d’un mur de refend correspondant à la zone
de rotule plastique faisant partie d’un bâtiment de huit étages à l’échelle 1/2,75 a été testé. Les
dimensions générales de la portion de mur testée étaient de 1800 mm de longueur, par 2200 mm
de hauteur par 160 mm d’épaisseur. Le mur étudié a été conçu selon l’édition 2015 du Code
National du Bâtiment du Canada (CNBC 2015) ainsi que selon la norme CSA A23.3-14 (Calcul
des ouvrages en béton), où le facteur d’amplification de l’effort tranchant causé par l’effet des
modes supérieurs n’a pas été pris en compte.
Lors des essais pseudo-dynamiques avec sous-structure, une nouvelle méthode de contrôle à
trois degrés de liberté convenant à des spécimens d’essai très rigides axialement a été développée
et validée. Une procédure novatrice de redémarrage d’un essai interrompu en cours de
route a également été développée et validée. Lors des essais, le bâtiment de huit étages incluant
la portion de mur dans le laboratoire a été soumis à trois séismes. Le premier séisme était
de très faible intensité, l’intensité du deuxième séisme correspondait au séisme de conception,
et le troisième séisme correspondait au séisme de conception dont l’intensité a été doublé. Durant
les deux séismes de forte intensité, le mur testé s’est comporté de manière ductile et des
fissures de cisaillement et de flexion importantes ont été observées. Même si l’effort tranchant
maximum mesuré durant le séisme de conception a atteint 2,16 fois la valeur de conception
du mur, et 3,01 fois la valeur de conception du mur dans le cas du séisme amplifié, aucun mécanisme
de ruine n’a été observé. Suite aux essais pseudo-dynamiques avec sous-structure, un
essai par poussée progressive a également été effectué.
Les résultats des essais pseudo-dynamiques avec sous-structure portent à croire que la valeur
de l’effort tranchant de conception d’un mur selon la norme CSA A23.3-14 est sous-estimé. De
plus, l’essai poussée progressive a permis de démontrer que lemur était beaucoup plus résistant
qu’anticipé, puisque l’effort tranchant avait été sous-estimé lors de la conception. L’essai par
poussée progressive a également permis de démontrer que le mur peut atteindre des niveaux
de ductilité en déplacement supérieur à celui prévu par la norme CSA A23.3-14. / Abstract: Most mid- and high-rise reinforced concrete (RC) buildings rely on RC structural walls as their seismic force resisting system. Ductile RC structural walls (commonly called shear walls) designed according to modern building codes are typically detailed to undergo plastic hinging at their base. Both the design moment envelope for the remaining portion of the wall and the design shear forces are evaluated based on the probable flexural resistance of the wall in the plastic hinge region. Several analytical studies have shown that so-designed structural walls can be subjected to shear forces in excess of the design values. Plastic hinging can also develop in the upper portion of the walls. These effects are mainly attributed to higher mode response and, hence, are more severe in taller or slender walls with long fundamental periods. Considering the literature, there is a significant uncertainty regarding the behavior of the structural walls under the higher mode of vibrations excited under earthquake excitations. Hybrid testing is an effective experimentalmethod to study the natural behaviour of structures such as shear walls. The hybrid testing method enables the simulation of the seismic response of large structural elements like RC shear walls without the need to include large masses typically encountered in multi-storey buildings. In this study a barbell shaped RC shear wall specimen of 1800mm in length including a 300mm × 300mm boundary element at each end that is 2200mm in height, and 160mm thick was investigated. A test specimen corresponding to the base plastic hinge zone of an 8-storey shear wall was tested in a laboratory evolvement whilst the reminder of the building structure was modeled numerically. The reference wall was scaled down by a factor of 1/2.75 to obtain dimensions of the test specimen. The RC wall was designed in accordance with the 2015 edition of the National Building Code of Canada (NBCC 2015) and the Canadian Standard Association A23.3-14 code. The amplification of the base design shear force accounting for the inelastic effects of higher modes specified by the CSAA23.3-14 standard was not taken into account in order to evaluate the amplification experimentally. In order to investigate the response of ductile RC walls under earthquake ground motions and track the effect of the higher vibration modes on the shear force demand, three earthquakes with different intensities were applied on the hybrid model successively. The RC wall exhibited a ductile behaviour under the ground motions and flexural and shear cracks developed all over the height of the wall. In spite of amplifying the shear force demand by a factor of 2.16 under the design level earthquake and 3.01 under a high intensity earthquake, no shear failure was observed. The test results indicated that the amplification of the design shear forces at the base of ductile RC shear walls are underestimated by the CSAA23.3-14 standard. A new method for controlling three degrees of freedomin hybrid simulation of the earthquake response of stiff specimens was developed and verified in this study. Also, an innovative procedure to restore an interrupted hybrid test was programmed and verified. The hybrid tests were followed by a push-over test under a lateral force distribution equal to the square root of sum of the squares of the first five modes in order to evaluate the displacement ductility of the RC wall. Findings of the final push-over test showed that the tested ductile RC wall can withstand higher displacement ductilities than the presented levels in the NBCC 2015.
|
3 |
Field and laboratory investigation on the dynamic behaviour of conventional railway track-bed materials in the context of traffic upgrade / Etude ‘in-situ’ et en laboratoire sur le comportement dynamique des matériaux constitutifs des plateformes ferroviaires classiques dans le contexte d'augmentation du traficLamas-Lopez, Francisco 15 April 2016 (has links)
Comme dans d'autres pays européens, en France, les lignes classiques constituent la plupart du réseau ferroviaire (94%) et elles sont généralement âgées de plus d'un siècle. Aujourd'hui, on est demandé d’améliorer les réseaux pour faire face à une augmentation de la charge du trafic et de la vitesse de service. Dans ce contexte, ce travail de thèse vise à étudier expérimentalement l'influence de la vitesse et de la charge sur le comportement dynamique des matériaux constituant les voies classiques, à travers à la fois le suivi «in-situ» et des essais en laboratoire. Pour les études «in-situ», une section de ligne représentative du réseau classique a été sélectionnée dans le réseau français. Le site choisi a fait l’objet d’une prospection géophysique et géotechnique, ce qui a permis de définir les propriétés géotechniques des différents sols constituant la plateforme. L’impact de la vitesse du train et la charge à l'essieu sur la contrainte verticale, déflection/déformation, et en particulier leurs amplifications ont été évalués avec l’augmentation de la vitesse d’un train d'essai Intercités roulant à des vitesses différentes de 60 km/h à 200 km/h et les différentes charges à l'essieu appliquées par des voitures de passagers et la locomotive. Une analyse statistique est aussi réalisée afin d'évaluer la variabilité de la réponse de la voie et leur amplification dynamique avec la vitesse, en se basant sur les données enregistrées lors des passages de trains commerciaux. On observe que l’'amplification dynamique de la réponse de la voie due à la vitesse des trains est directement liée au rapport entre la vitesse des trains et la vitesse des ondes de surface du site. Un matériau représentative du sol intermédiaire des voies classiques a été préparé et testé dans une cellule triaxiale cyclique pour étudier son comportement mécanique. Deux types de charges, de forme sinusoïdale et de forme M, ont été appliqués et, en outre, deux teneurs en eau ont été examinés. Des variations des paramètres dynamiques des sols tels que le module élastique et le rapport d’amortissement avec le nombre de cycles ont été évalués, et les effets des paramètres de chargement tels que la forme de la charge, l'amplitude de la charge et la fréquence de charge ont été étudiés. L'effet de la teneur en eau a été étudié également. Il a été observé que la réponse de l'énergie développée pendant le chargement cyclique est un paramètre qui gouverne le comportement mécanique des sols à petit et grand nombre de cycles. En outre, la charge en forme sinusoïdale a été trouvée plus agressive que celle en forme de M parce que ce chargement sinusoïdal développe plus d'énergie, engendrant ainsi plus de déformations permanentes du sol à grand nombre de cycles, particulièrement le cas lorsque le sol est saturé. A partir des résultats obtenus sur le terrain et en laboratoire, deux modèles analytiques en 2-D ont été développés permettant de décrire la distribution de contrainte verticale et la propagation des déflections verticales. Certains paramètres mécaniques tels que les modules élastiques des couches de la voie, leurs rapports d'amortissement, leurs épaisseurs, ainsi que la vitesse moyenne des ondes de surface dans la section de voie considérée se sont révélés être les principaux paramètres contrôlant le comportement dynamique de la voie. Une comparaison entre les mesures effectuées sur le terrain et les résultats des essais en laboratoire a été également réalisée. La réponse de la voie sous différents types de trains, TER et TGV avec des charges équivalentes mais avec différentes configurations spatiales des essieux, est présentée. On observe que la réponse en énergie est plus élevée pour TGV que pour TER. Cette plus grande énergie développée suggère une plus grande agressivité vis-à-vis de la structure de la voie. Ainsi, la réponse en énergie est un indicateur important à prendre en compte lors d’un suivi du comportement mécanique d’une voie / As in other European countries, in France the conventional lines constitute the main part of the whole railway network (94%) and they are generally over a century old. Nowadays, facing the demand of upgrading both the traffic load and speed, it is of paramount importance to acquire good knowledge on the corresponding impact on the mechanical behaviour of tracks, at both short and long terms. In this context, this PhD work aims at investigating the influence of train speed and axle load on the dynamic behaviour of materials constituting the conventional track-beds, through both ‘in-situ’ monitoring and laboratory testing. For the field monitoring, a representative track was selected from the French conventional network following well-defined criteria. The selected site underwent a geophysical and geotechnical prospection, allowing the site critical speed and the geotechnical properties of different soils constituting the track-bed to be determined. The first data allowed assessing the influence of the track state conditions and the traffic loading on the measurements of each sensor. The train speed and axle load impacts on the vertical stress, deflection/strain, in particular their amplifications with speed increase were evaluated based on the data with an Intercity test train running at different speeds from 60 km/h to 200 km/h and the different axle loads applied by Coaches (105 kN/axle) and Locomotive (225 kN/axle). A statistical analysis was made to assess the variability of track response and their dynamic amplification with speed based on the data with passages of commercial trains. The dynamic amplification of track response due to train speed was found to be directly related to the ratio of train speed to the surface wave velocity. The laboratory test conditions were defined based on the field measurements. A material representative of an interlayer soil was prepared and tested in a large-scale cyclic triaxial cell to investigate its mechanical behaviour. Both Sine-shaped and M-shaped loads were applied and in addition, two water contents were considered. The variations of dynamic parameters such as resilient modulus and damping ratio with number of cycles were assessed, and the effects of loading parameters such as consolidation pressure, load shape, load amplitude and load frequency were investigated. The effect of water content was studied as well. It was observed that the response of energy developed during cyclic loading is an important parameter controlling the soil mechanical behaviour at both small and large numbers of cycles. Also, the Sine-shaped loading was found more aggressive than M-shaped loading since the former results in higher energy and therefore larger soil deformation. This is particularly the case when the soil is saturated. Based on the results obtained in the field and laboratory, two 2-D analytical models were developed allowing the description of vertical stress and vertical deflection transmissions in track-beds. Some mechanical parameters such as the moduli of track-bed layers, their damping ratios, thicknesses as well as the average track surface wave velocity were found to be the key parameters governing the track dynamic behaviour. A comparison between field and laboratory results was also made. The track response to the loading by different train types, considering equivalent loads but different spatial loading configurations from TER and TGV train axles is presented. It was found that for each monitored position in the track, the response energy was higher for TGV than for TER. This larger developed energy suggests a higher aggressiveness to the track structure. Thus, the energy response is a key indicator to be taken into account when performing a track mechanical behaviour monitoring
|
Page generated in 0.1018 seconds