• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural biology of the amyloidogenic protein beta 2 microglobulin

Smith, David Paul January 2003 (has links)
No description available.
2

The distribution of p38(MAPK) in the sensorimotor cortex of a mouse model of Alzheimers disease

ZHAO, TUO 22 September 2011
The p38 mitogen-activated protein kinase [p38(MAPK)] mediates responses to extracellular stressors. An increase in the phosphorylated form of p38(MAPK) [p-p38(MAPK)] has been associated with early events in Alzheimer disease (AD). Although most often associated with processes including apoptosis, inflammation and oxidative stress, p-p38(MAPK) also mediates beneficial physiological functions, such as cell growth, survival and phagocytosis of cellular pathogens. Amyloid plaques [β-amyloid aggregates] are a hallmark of AD-related pathology. As p38(MAPK) has been detected in the vicinity of senile plaques, we combined immunohistochemistry and stereological sampling to quantify the distribution of plaques and p-p38(MAPK)-immunoreactive (IR) cells in the sensorimotor cortex of 3-, 6- and 10-month-old TgCRND8 mice. This animal model expresses an aggressive nature of the AD-related human amyloid-β protein precursor (APP). It was confirmed by the appearance of both dense-core (thioflavin-S-positive) and diffuse plaques, even in the youngest mice. p-p38(MAPK)-IR cells were associated with both dense-core and diffuse plaques, but the expected age-dependent increase in the density of plaque-associated p-p38(MAPK)-IR cells was restricted to dense-core plaques. Furthermore, the density of dense-core plaque-associated p-p38(MAPK)-IR cells was inversely correlated with the size of the core within the given plaque, which supports a role for these microglia in restricting core growth. p-p38(MAPK)-IR cells were also observed throughout wildtype and TgCRND8 mouse cortical parenchyma, but the density of these non-plaque-associated cells remained constant, regardless of age or genotype. We conclude that the constitutive presence of p-p38(MAPK)-IR microglia in aging mouse brain is indicative of a longitudinal role for this kinase in normal brain physiology. Additionally, the majority of p-p38(MAPK)-IR cells were predominantly co-immunoreactive for the Macrophage-1 (CD11b/CD18) microglial marker, regardless of whether they were associated with plaques or localized to the parenchyma. We suggest that the facts that a pool of p-p38(MAPK)-IR microglia appears to restrict b-amyloid plaque core development and the non-pathological role of p-p38(MAPK) in parenchyma, needs to be considered when anticipating targeted p38(MAPK) therapeutics in the context of clinical AD.
3

The distribution of p38(MAPK) in the sensorimotor cortex of a mouse model of Alzheimers disease

ZHAO, TUO 22 September 2011 (has links)
The p38 mitogen-activated protein kinase [p38(MAPK)] mediates responses to extracellular stressors. An increase in the phosphorylated form of p38(MAPK) [p-p38(MAPK)] has been associated with early events in Alzheimer disease (AD). Although most often associated with processes including apoptosis, inflammation and oxidative stress, p-p38(MAPK) also mediates beneficial physiological functions, such as cell growth, survival and phagocytosis of cellular pathogens. Amyloid plaques [β-amyloid aggregates] are a hallmark of AD-related pathology. As p38(MAPK) has been detected in the vicinity of senile plaques, we combined immunohistochemistry and stereological sampling to quantify the distribution of plaques and p-p38(MAPK)-immunoreactive (IR) cells in the sensorimotor cortex of 3-, 6- and 10-month-old TgCRND8 mice. This animal model expresses an aggressive nature of the AD-related human amyloid-β protein precursor (APP). It was confirmed by the appearance of both dense-core (thioflavin-S-positive) and diffuse plaques, even in the youngest mice. p-p38(MAPK)-IR cells were associated with both dense-core and diffuse plaques, but the expected age-dependent increase in the density of plaque-associated p-p38(MAPK)-IR cells was restricted to dense-core plaques. Furthermore, the density of dense-core plaque-associated p-p38(MAPK)-IR cells was inversely correlated with the size of the core within the given plaque, which supports a role for these microglia in restricting core growth. p-p38(MAPK)-IR cells were also observed throughout wildtype and TgCRND8 mouse cortical parenchyma, but the density of these non-plaque-associated cells remained constant, regardless of age or genotype. We conclude that the constitutive presence of p-p38(MAPK)-IR microglia in aging mouse brain is indicative of a longitudinal role for this kinase in normal brain physiology. Additionally, the majority of p-p38(MAPK)-IR cells were predominantly co-immunoreactive for the Macrophage-1 (CD11b/CD18) microglial marker, regardless of whether they were associated with plaques or localized to the parenchyma. We suggest that the facts that a pool of p-p38(MAPK)-IR microglia appears to restrict b-amyloid plaque core development and the non-pathological role of p-p38(MAPK) in parenchyma, needs to be considered when anticipating targeted p38(MAPK) therapeutics in the context of clinical AD.
4

Segmentace amyloidních plaků v mozcích transgenních potkanů na základě mikroCT dat / Segmentation of amyloid plaques in brains of trangenic rats based on microCT image data

Kačníková, Diana January 2020 (has links)
The presence of amyloid plaques in the hippocampus highlights the incidence of Alzheimer’s disease. Manual segmentation of amyloid plaques is very time consuming and increases the time that can be used to monitor the distribution of amyloid plaques. Distribution carries significant information about disease progression and the impact of potential therapy. The automatic or semi-automatic segmentation method can lead to significant savings in the time which are required when the disease has rapid progression. The description of amyloid plaques and the computed tomography are included in this work. In this diploma thesis are three implemented algorithms, two of them are based on published articles and one’s own methodological solution. The conclusion of the thesis is a quantitative evaluation of the accuracy of implemented segmentation procedures.
5

Etudes biologiques de nouveaux radiotraceurs pour l'imagerie moléculaire de la maladie d'Alzheimer / Biological studies of new radiotracers for molecular imaging of Alzheimer's disease

Garin, Dominique 26 January 2012 (has links)
La maladie d'Alzheimer (MA) est une pathologie neurodégénérative s'exprimant par des troubles de la mémoire et un déclin cognitif évoluant progressivement vers un stade de démence incurable. Elle représente la cause principale de syndrome démentiel puisque l'on estime qu'elle est à l'origine de plus de 70% des cas de démences. Du fait de sa prévalence élevée après 60 ans, la MA représente un problème majeur de santé publique. La MA se caractérise par la présence de deux types de lésions cérébrales : les dégénérescences neurofibrillaires (DNF) et les plaques amyloïdes. Cependant, aucun consensus clair ne se dégage concernant les relations qui lient les deux types de lésions. Leur présence ne peut être mise en évidence que par un examen post-mortem. La MA est par définition une pathologie évolutive, cet examen ne permet donc pas de caractériser de manière adéquate les processus dynamiques qui sous-tendent cette pathologie. La mise au point de techniques d'imagerie non invasives permettant de réaliser un suivi longitudinal in vivo de ces lésions s'avère déterminante dans la compréhension de la physiopathologie de la MA. Les travaux effectués au cours de cette thèse ont pour objectif la mise au point de nouveaux radiotraceurs des lésions amyloïdes et neurofibrillaires pour l'imagerie nucléaire. Cette approche se distingue en trois parties. Dans un premier temps, nous avons validé un modèle animal de la MA: les souris transgéniques 3xTgAD. Dans un second temps, nous avons réalisé l'évaluation biologique de différents radiotraceurs connus sur ce modèle animal : le 99mTc-HMPAO, le 18F-FDG et le 125I-IMPY. Enfin, nous avons initié le développement de plusieurs nouveaux traceurs pour permettre le suivi de la MA in vivo : les para-sulfonato-calixarènes qui présentent une affinité intéressante pour les plaques amyloïdes, les composés COB qui inhibent la formation des agrégats de peptides amyloïdes in vitro ainsi qu'un peptide, A93, associé à un vecteur qui pourrait interagir avec les dégénérescences neurofibrillaires. / Alzheimer's disease (AD) is a neurodegenerative pathology showing cognitive and memory disorders which progress toward an incurable demential state. AD represents the principle cause of the dementia syndrome and it is estimated that AD is involved in 70% of dementia cases. AD prevalence is high in the over 60 years old population. This elevated prevalence is associated with an increasing number of elderly people. AD is therefore a major public health concern. AD is characterized by two types of specific cerebral lesions: neurofibrillary tangles (NFT) and amyloid plaques. However, there is no consensus on the links between these two types of lesions. To date, their presence can only be evaluated by a post-mortem examination. AD being a progressive pathology, this examination cannot be used to fully characterize the dynamic processes involved in AD. In this context, the development of non invasive imaging techniques to monitor the lesions progression in vivo could be determinant in AD pathophysiology understanding. Our objective is to develop new tracers of amyloid and neurofibrillary lesions for nuclear imaging. The first part of this study was dedicated to the validatation of an AD animal model: Transgenic 3xTgAD mice. The second part of this thesis focuses on the appreciatiation of the biological comportement of several known radiotracers of AD on this animal model. In the third part of this work, we initiate the development of several new tracers of AD-specific lesions. The para-sulfonato- calixarenes and the COB compounds for amyloid plaques detection and a peptide named A93, associated to a vector for the study of neurofibrillary tangles.
6

Pathways to dementia: genetic predictors of cognitive and brain imaging endophenotypes in Alzheimer's disease

Ramanan, Vijay K 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer's disease (AD) is a national priority, with nearly six million Americans affected at an annual cost of $200 billion and no available cure. A better understanding of the mechanisms underlying AD is crucial to combat its high and rising incidence and burdens. Most cases of AD are thought to have a complex etiology with numerous genetic and environmental factors influencing susceptibility. Recent genome-wide association studies (GWAS) have confirmed roles for several hypothesized genes and have discovered novel loci associated with disease risk. However, most GWAS-implicated genetic variants have displayed modest individual effects on disease risk and together leave substantial heritability and pathophysiology unexplained. As a result, new paradigms focusing on biological pathways have emerged, drawing on the hypothesis that complex diseases may be influenced by collective effects of multiple variants – of a variety of effect sizes, directions, and frequencies – within key biological pathways. A variety of tools have been developed for pathway-based statistical analysis of GWAS data, but consensus approaches have not been systematically determined. We critically review strategies for genetic pathway analysis, synthesizing extant concepts and methodologies to guide application and future development. We then apply pathway-based approaches to complement GWAS of key AD-related endophenotypes, focusing on two early, hallmark features of disease, episodic memory impairment and brain deposition of amyloid-β. Using GWAS and pathway analysis, we confirmed the association of APOE (apolipoprotein E) and discovered additional genetic modulators of memory functioning and amyloid-β deposition in AD, including pathways related to long-term potentiation, cell adhesion, inflammation, and NOTCH signaling. We also identified genetic associations to amyloid-β deposition that have classically been understood to mediate learning and memory, including the BCHE gene and signaling through the epidermal growth factor receptor. These findings validate the use of pathway analysis in complex diseases and illuminate novel genetic mechanisms of AD, including several pathways at the intersection of disease-related pathology and cognitive decline which represent targets for future studies. The complexity of the AD genetic architecture also suggests that biomarker and treatment strategies may require simultaneous targeting of multiple pathways to effectively combat disease onset and progression.

Page generated in 0.0251 seconds