• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliação de curvas de potência em modelos de previsão de geração eólica em curto prazo

ALBUQUERQUE, Jonata Campelo de 23 October 2015 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-04-26T17:55:41Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Jonata Campelo de Albuquerque.pdf: 6416251 bytes, checksum: 40ff842465c2788b57659257c840f35a (MD5) / Made available in DSpace on 2016-04-26T17:55:41Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Jonata Campelo de Albuquerque.pdf: 6416251 bytes, checksum: 40ff842465c2788b57659257c840f35a (MD5) Previous issue date: 2015-10-23 / CNPQ / Nesta dissertação se propõe modelos de previsão de geração eólica baseados em técnicas de Inteligência Artificial (IA), tais como aplicações de Redes Neurais Artificiais (RNAs) e Sistemas de Inferência Fuzzy (SIFs). Tais previsões foram realizadas de forma horária, sendo os horizontes de 1h à 24h, classificando os modelos como previsores de curto prazo. Atrelada à presciência respectiva de cada modelo de entrada, estão as predições de velocidades médias ou velocidades médias e direções médias do vento. Estas são utilizadas como entradas para modelos de curva de potência dos parques eólicos em análise, nos quais dependendo do modelo em questão, esta poderá ser uma RNA ou um SIF. Tal aplicação é feita para dois parques reais descritos ao longo deste trabalho. Ao fim, faz-se uma comparação entre tais modelos, na qual o desempenho obtido revela-se bastante competitivo em termos de acurácia nas previsões de geração eólica dos SIFs em relação às RNAs / This paper proposes and develops models for wind power prediction, based on Artificial Intelligence concepts with regard to ANN applications (Artificial Neural Networks) and FIS (Fuzzy Inference System). Such models have application time horizon, which is 24 hours, which is why the models are short term denominated. Linked to their foreknowledge of each model are predictions of medium and / or medium speeds directions, which serve as input for a specific power curve of the park in question. Where depending on the model in question, it may be an artificial neural network or Fuzzy inference block, such a study is made for two typical parks described throughout this work. At the end, makes a comparison between these models showing the highly competitive performance in terms of power efficiency in predictions, the Fuzzy inference blocks in relation to neural networks.

Page generated in 0.0982 seconds