• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um planejamento de experimentos para a avaliação do fluxo de calor crítico de reatores nucleares a água pressurizada de pequena escala. / A design of experiments for evaluating the critical heat flux of small-scale pressurized water reactors.

Duarte, Juliana Pacheco 08 August 2014 (has links)
Um dos parâmetros termo-hidráulicos de segurança mais importantes no projeto e operação de reatores a água pressurizada é o fluxo de calor crítico (FCC). O FCC ocorre quando se atinge uma região de instabilidade na mudança de mecanismo de transferência de calor de uma parede aquecida para um fluido, aumentado drasticamente a temperatura da parede. Transientes em um reator nuclear podem afetar a taxa de geração de calor ou a fluxo de refrigerante no núcleo, prejudicando a retirada de calor das varetas combustíveis. Conhecer o FCC nestas condições é essencial para evitar danos às varetas e, consequentemente, a liberação de material radioativo. O objetivo deste trabalho é analisar o FCC para o LABGENE (Laboratório de Geração Nucleoelétrica) por meio do planejamento experimental e da simulação de seções de teste em condições de operação utilizando o código COBRAIIIc/MIT-1 e a correlação EPRI para o FCC. Considerou-se primeiramente seções de teste 3×3 de dois tamanhos distintos e os resultados para 100 pontos experimentais foram mostrados por meio de superfícies de resposta, a fim de melhor visualizar e analisar o comportamento de FCC para cada condição. Dois pontos importantes são os valores máximo e mínimo do FCC encontrados. O valor máximo (1,038 MBtu/hr.ft2 ou 3,27 MW/m2) indica o fluxo de calor necessário para a realização dos experimentos e o mínimo (0,162 MBtu/hr.ft2 ou 0,51 MW/m2) indica a pior condição de operação, a qual estaria mais próxima do ponto de ebulição. As simulações e modificações no código foram verificadas utilizando o banco de dados da Universidade de Columbia. Foram selecionados 2718 pontos experimentais referentes a seções de teste 5×5 com perfil de potência uniforme. Os resultados foram apresentados pela razão entre o valor predito e o valor experimental (DNBR) e os limites de tolerância unilateral 95/95 foram calculados, estando dentro dos valores esperados. / One of the most important thermal-hydraulic safety parameters for pressurized water reactor design and operation is the critical heat flux (CHF). The CHF occurs when a region of instability reached in the change of heat transfer mechanism from a hot wall to a fluid is reached, dramatically increasing the wall temperature. Transients in a nuclear reactor can affect the heat generation rate or the coolant flow in the core, impairing the removal of heat from the fuel rods. Knowledge of the CHF on these conditions is essential to prevent fuel rod damages and therefore the release of radioactive material. The main goal of this work is to analyze the CHF for LABGENE (Nuclear-electrical Generation Laboratory) by an experimental design and test sections simulation in operating conditions by using COBRAIIIc/MIT-1 code and the EPRI correlation for CHF. 3x3 test sections were initially considered for two different heights and outcomes for 100 experimental points were shown by means of response surfaces in order to better visualize and analyze the behavior of CHF for each condition. Two important points are the maximum and minimum values of the CHF found. The maximum value (1.038 MW/m2 or 3.27 MBtu/hr.ft2) indicates the power required for the experiments and the minimum one (0.162 MBtu/hr.ft2 or 0.51 MW/m2) indicates the worst operation condition, which would be closer to the boiling point. Code simulations and modifications were verified using the CHF database of Columbia University. 2718 data points pertaining to test sections 5×5 with uniform power profile were selected. The results were presented by the ratio between the predicted value and the experimental value (DNBR) and the limits of unilateral tolerance 95/95 were calculated, being within the expected values.
2

Um planejamento de experimentos para a avaliação do fluxo de calor crítico de reatores nucleares a água pressurizada de pequena escala. / A design of experiments for evaluating the critical heat flux of small-scale pressurized water reactors.

Juliana Pacheco Duarte 08 August 2014 (has links)
Um dos parâmetros termo-hidráulicos de segurança mais importantes no projeto e operação de reatores a água pressurizada é o fluxo de calor crítico (FCC). O FCC ocorre quando se atinge uma região de instabilidade na mudança de mecanismo de transferência de calor de uma parede aquecida para um fluido, aumentado drasticamente a temperatura da parede. Transientes em um reator nuclear podem afetar a taxa de geração de calor ou a fluxo de refrigerante no núcleo, prejudicando a retirada de calor das varetas combustíveis. Conhecer o FCC nestas condições é essencial para evitar danos às varetas e, consequentemente, a liberação de material radioativo. O objetivo deste trabalho é analisar o FCC para o LABGENE (Laboratório de Geração Nucleoelétrica) por meio do planejamento experimental e da simulação de seções de teste em condições de operação utilizando o código COBRAIIIc/MIT-1 e a correlação EPRI para o FCC. Considerou-se primeiramente seções de teste 3×3 de dois tamanhos distintos e os resultados para 100 pontos experimentais foram mostrados por meio de superfícies de resposta, a fim de melhor visualizar e analisar o comportamento de FCC para cada condição. Dois pontos importantes são os valores máximo e mínimo do FCC encontrados. O valor máximo (1,038 MBtu/hr.ft2 ou 3,27 MW/m2) indica o fluxo de calor necessário para a realização dos experimentos e o mínimo (0,162 MBtu/hr.ft2 ou 0,51 MW/m2) indica a pior condição de operação, a qual estaria mais próxima do ponto de ebulição. As simulações e modificações no código foram verificadas utilizando o banco de dados da Universidade de Columbia. Foram selecionados 2718 pontos experimentais referentes a seções de teste 5×5 com perfil de potência uniforme. Os resultados foram apresentados pela razão entre o valor predito e o valor experimental (DNBR) e os limites de tolerância unilateral 95/95 foram calculados, estando dentro dos valores esperados. / One of the most important thermal-hydraulic safety parameters for pressurized water reactor design and operation is the critical heat flux (CHF). The CHF occurs when a region of instability reached in the change of heat transfer mechanism from a hot wall to a fluid is reached, dramatically increasing the wall temperature. Transients in a nuclear reactor can affect the heat generation rate or the coolant flow in the core, impairing the removal of heat from the fuel rods. Knowledge of the CHF on these conditions is essential to prevent fuel rod damages and therefore the release of radioactive material. The main goal of this work is to analyze the CHF for LABGENE (Nuclear-electrical Generation Laboratory) by an experimental design and test sections simulation in operating conditions by using COBRAIIIc/MIT-1 code and the EPRI correlation for CHF. 3x3 test sections were initially considered for two different heights and outcomes for 100 experimental points were shown by means of response surfaces in order to better visualize and analyze the behavior of CHF for each condition. Two important points are the maximum and minimum values of the CHF found. The maximum value (1.038 MW/m2 or 3.27 MBtu/hr.ft2) indicates the power required for the experiments and the minimum one (0.162 MBtu/hr.ft2 or 0.51 MW/m2) indicates the worst operation condition, which would be closer to the boiling point. Code simulations and modifications were verified using the CHF database of Columbia University. 2718 data points pertaining to test sections 5×5 with uniform power profile were selected. The results were presented by the ratio between the predicted value and the experimental value (DNBR) and the limits of unilateral tolerance 95/95 were calculated, being within the expected values.

Page generated in 0.0883 seconds