Spelling suggestions: "subject:"anaerobic methane oxidation"" "subject:"unaerobic methane oxidation""
1 |
Methane sources, fluid flow, and diagenesis along the northern Cascadia Margin; using authigenic carbonates and pore waters to link modern fluid flow to the pastJoseph, Craig E. 29 February 2012 (has links)
Methane derived authigenic carbonate (MDAC) precipitation occurs within marine sediments as a byproduct of the microbial anaerobic oxidation of methane (AOM). While these carbonates form in chemical and isotopic equilibrium with the fluids from which they precipitate, burial diagenesis and recrystallization can overprint these signals. Plane polarized light (PPL) and cathodoluminescent (CL) petrography have allowed for detailed characterization of carbonate phases and their subsequent alteration. Modern MDACs sampled offshore in northern Cascadia (n =33) are compared with paleoseep carbonates (n =13) uplifted on the Olympic Peninsula in order to elucidate primary vs. secondary signals, with relevance to interpretations of the carbonate record.
The modern offshore environment (S. Hydrate Ridge and Barkley Canyon) is dominated by metastable acicular and microcrystalline aragonite and hi-Mg calcite (HMC) that with time will recrystallize to low-Mg calcite (LMC). The diagenetic progression is accompanied by a decrease in Mg/Ca and Sr/Ca ratios while variation in Ba/Ca depends upon the Ba-concentration of fluids that spur recrystallization. CL images discern primary carbonates with high Mn/Ca from secondary phases that reflect the Mn- enrichment that characterizes deep sourced fluids venting at Barkley Canyon.
Methane along the Cascadia continental margin is mainly of biogenic origin, where reported strontium isotopic values reflect a mixture of seawater with fluids modified by reactions with the incoming Juan de Fuca plate. In contrast, the Sr-isotopic composition of carbonates and fluids from Integrated Ocean Drilling Program (IODP) Site U1329 and nearby Barkley Canyon point to a distinct endmember (lowest ⁸⁷Sr/⁸⁶Sr = 0.70539). These carbonates also show elevated Mn/Ca and δ¹⁸O values as low as -12‰, consistent with a deep-source of fluids feeding thermogenic hydrocarbons to the Barkley Canyon seeps. Two paleoseep carbonates sampled from the uplifted Pysht/Sooke Fm. have ⁸⁷Sr/⁸⁶Sr values similar to those of the anomalous Site U1329 and Barkley Canyon carbonates (⁸⁷Sr/⁸⁶Sr = 0.70494 and 0.70511).
We postulate that the ⁸⁷Sr-depleted carbonates and pore fluids found at Barkley Canyon represent migration by the same type of deep, exotic fluid as is found in high permeability conglomerate layers down to 190 mbsf at Site U1329, and which fed paleoseeps in the Pysht/Sooke Fm. These exotic fluids likely reflect interaction with the 52-57 Ma igneous Crescent Terrane, which is located down-dip from both Barkley Canyon and Site U1329. This previously unidentified endmember fluid in northern Cascadia may have sourced cold seeps in this margin since at least the late Oligocene. / Graduation date: 2012
|
2 |
METHANE BUDGET OF A LARGE GAS HYDRATE PROVINCE OFFSHORE GEORGIA, BLACK SEAHaeckel, Matthias, Reitz, Anja, Klaucke, Ingo 07 1900 (has links)
The Batumi Seep Area, offshore Georgia, Black Sea, has been intensively cored (gravity cores
and TV-guided multi-cores) to investigate the methane turnover in the surface sediments. The
seep area is characterized by vigorous methane gas bubble emanations. Geochemical analyses
show a microbial origin of the methane and a shallow fluid source. Anaerobic methane oxidation
rapidly consumes the SO4
2- within the top 5-20 cm, but significant upward fluid advection is not
indicated by the porewater profiles. Hence, the Batumi Seep Area must be dominated by methane
gas seepage in order to explain the required CH4 flux from below. 1-D transport-reaction
modelling constrains the methane flux needed to support the observed SO4
2- flux as well as the
rate of near-surface hydrate formation. The model results correlate well with the hydro-acoustic
backscatter intensities recorded and mapped bubble release sites using the sonar of a ROV.
|
3 |
Oxydation anaérobie du méthane couplée à la réduction de différents composés du soufre en bioréacteurs / Anaerobic oxidation of methane coupled to the reduction of different sulfur compounds in bioreactorsCassarini, Chiara 28 June 2017 (has links)
De grandes quantités de méthane sont générées dans les sédiments marins, mais l'émission dans l'atmosphère de ce gaz à effet de serre important est en partie contrôlé par oxydation anaérobie de méthane couplé à la réduction de sulfate (SR AOM). AOM-SR est médiée par des méthanotrophes anaérobies (ANME) et bactéries sulfato-réductrices (SRB). AOM-SR est non seulement la régulation du cycle du méthane, mais il peut être utile appliquée pour la désulfuration des eaux usées industrielles au détriment du méthane comme source de carbone. Cependant, il a une bouilloire jambe pour contrôler et comprendre pleinement ce processus, principalement en raison de la lenteur croissante de l'ANME. Cette recherche a étudié de nouvelles approches pour contrôler et enrichiront ANME AOM SR et SRB dans le but final de la conception d'un bioréacteur approprié pour AOM SR à la pression ambiante et la température. Ceci a été réalisé en étudiant l'effet de (i) la pression et (ii) l'utilisation de différents composés du soufre comme accepteurs d'électrons sur AOM, (iii) la caractérisation de la communauté microbienne et (iv) L'identification des facteurs contrôlant la croissance des ANME et SRB .Théoriquement, le méthane des pressions partielles élevées favorisent AOM-SR, en plus de méthane sera dissoute et biodisponible. La première approche impliquait l'incubation d'un sédiments marins peu profonds (lac marin Gravelines) sous des gradients de pression. De manière surprenante, la plus haute AOM-SR activité a été obtenue à basse pression (MPa 00:45), montrant l'actif ANME méthane préféré faible disponibilité sur haute pression (10, 20, 40 MPa). Fait intéressant, ook l'abondance et la structure des différents types de ANME et CVN Piloté par pression.En outre, les micro-organismes présents dans les sédiments d'oxydation anaérobie de méthane ont été enrichies avec du méthane en tant que substrat dans le filtre de percolateur (BTF) aux conditions ambiantes. Autres composés de soufre (sulfate, thiosulfate et en soufre élémentaire) ont été utilisés comme accepteurs d'électrons. Quand a été utilisé comme thiosulfate accepteur d'électrons, son dismutation en sulfate et de sulfure a été la conversion de soufre dominant, mais les taux les plus élevés UTILE AOM-SR ont été enregistrés dans ce BTF. Par conséquent, AOM peut être directement couplé à la réduction ou thiosulfate, ou à la réduction du sulfate produit par le thiosulfate de dismutation. De plus, l'utilisation de thiosulfate a déclenché l'enrichissement ou SRB. D'autres termes, on a obtenu le plus haut ou l'enrichissement ANME Lorsque seul le sulfate a été utilisé comme accepteur d'électrons.Dans un BTF avec du sulfate en tant qu'accepteur d'électrons, tous deux ANME et SRB ont été enrichies à partir de sédiments marins et les flux de carbone à l'intérieur des micro-organismes enrichis ont été étudiés par fluorescence in situ échelle hybridation nanomètres spectrométrie de masse d'ions secondaires (SIMS Nano-FISH). Les résultats préliminaires montrent l'absorption du méthane par un groupe spécifique de SRB.ANME et SRB adaptée aux conditions de sédiments profonds ont été enrichis dans un BTF à la pression ambiante et de la température. Le BTF est une combinaison bioréacteur de démarrage pour l'enrichissement ou lente des micro-organismes en croissance. De plus, peut être utilisé thiosulfate pour activer les sédiments et enrichir la communauté SRB plus d'enrichir la population stratégie ANME pour obtenir une haute AOM SR et plus rapide taux de croissance ANME et SRB pour les applications futures / Large amounts of methane are generated in marine sediments, but the emission to the atmosphere of this important greenhouse gas is partly controlled by anaerobic oxidation of methane coupled to sulfate reduction (AOM-SR). AOM-SR is mediated by anaerobic methanotrophs (ANME) and sulfate reducing bacteria (SRB). AOM-SR is not only regulating the methane cycle but it can also be applied for the desulfurization of industrial wastewater at the expense of methane as carbon source. However, it has been difficult to control and fully understand this process, mainly due to the slow growing nature of ANME. This research investigated new approaches to control AOM-SR and enrich ANME and SRB with the final purpose of designing a suitable bioreactor for AOM-SR at ambient pressure and temperature. This was achieved by studying the effect of (i) pressure and of (ii) the use of different sulfur compounds as electron acceptors on AOM, (iii) characterizing the microbial community and (iv) identifying the factors controlling the growth of ANME and SRB.Theoretically, elevated methane partial pressures favor AOM-SR, as more methane will be dissolved and bioavailable. The first approach involved the incubation of a shallow marine sediment (marine Lake Grevelingen) under pressure gradients. Surprisingly, the highest AOM-SR activity was obtained at low pressure (0.45 MPa), showing that the active ANME preferred scarce methane availability over high pressure (10, 20, 40 Mpa). Interestingly, also the abundance and structure of the different type of ANME and SRB were steered by pressure.Further, microorganisms from anaerobic methane oxidizing sediments were enriched with methane gas as the substrate in biotrickling filters (BTF) at ambient conditions. Alternative sulfur compounds (sulfate, thiosulfate and elemental sulfur) were used as electron acceptors. When thiosulfate was used as electron acceptor, its disproportionation to sulfate and sulfide was the dominating sulfur conversion, but also the highest AOM-SR rates were registered in this BTF. Therefore, AOM can be directly coupled to the reduction of thiosulfate, or to the reduction of sulfate produced by thiosulfate disproportionation. Moreover, the use of thiosulfate triggered the enrichment of SRB. Differently, the highest enrichment of ANME was obtained when only sulfate was used as electron acceptor.In a BTF with sulfate as electron acceptor, both ANME and SRB were enriched from marine sediment and the carbon fluxes within the enriched microorganisms were studied through fluorescence in-situ hybridization-nanometer scale secondary ion mass spectrometry (FISH-NanoSIMS). Preliminary results showed the uptake of methane by a specific group of SRB.ANME and SRB adapted to deep sediment conditions were enriched in a BTF at ambient pressure and temperature. The BTF is a suitable bioreactor for the enrichment of slow growing microorganisms. Moreover, thiosulfate can be used to activate the sediment and enrich the SRB community to further enrich the ANME population as strategy to obtain high AOM-SR and faster ANME and SRB growth rates for future applications
|
Page generated in 0.3775 seconds