• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 10
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[en] MAXIMUM LIKELIHOOD RATIO TEST IN TIME SERIES IDENTIFICATION / [pt] TESTE DE RAZÃO DE VEROSSIMILHANÇA GENERALIZADO NA IDENTIFICAÇÃO DE SÉRIES TEMPORAIS

JOSE MAURO PEDRO FORTES 27 August 2009 (has links)
[pt] Muito freqüentemente, as técnicas utilizadas na identificação de processos estocásticos conduzem a mais de um modelo passível de ser utilizado na caracterização do processo. O problema de escolher entre estes modelos é formulado como um problema de teste de hipóteses, e o teste de razão de verossimilhança é a ele aplicado. Considera-se então a situação particular onde se quer descrever processos de parâmetro discreto (séries temporais) através de modelos ARIMA (autoregressive Integrated Moving Average). O teste de razão de verossimilhança associado ao problema é então deduzido e implementado através do algoritmo de Kalman-Bucy. Comparações com um outro teste usualmente empregado na escolha de modelos para séries temporais mostram a superioridade do teste de razão de verossimilhança. / [en] Very often random process identification techniques lead to several prospective models to characterize the process. The problem of choosing among these models is cast as a hypothesis testing problem, to which a likelihood ratio test is applied. For the special situation in which a choice between two autoregressive integrated moving average models is to made, likelihood ratio is derived and afterwards implemented through the Kalman-Bucy algorithm. Comparisons with another procedure usually connected to time series model choices show likelihood ratio tests are definetely superior.
22

[en] IDENTIFICATION MECHANISMS OF SPURIOUS DIVISIONS IN THRESHOLD AUTOREGRESSIVE MODELS / [pt] MECANISMOS DE IDENTIFICAÇÃO DE DIVISÕES ESPÚRIAS EM MODELOS DE REGRESSÃO COM LIMIARES

ANGELO SERGIO MILFONT PEREIRA 10 December 2002 (has links)
[pt] O objetivo desta dissertação é propor um mecanismo de testes para a avaliação dos resultados obtidos em uma modelagem TS-TARX.A principal motivação é encontrar uma solução para um problema comum na modelagem TS-TARX : os modelos espúrios que são gerados durante o processo de divisão do espaço das variáveis independentes.O modelo é uma heurística baseada em análise de árvore de regressão, como discutido por Brieman -3, 1984-. O modelo proposto para a análise de séries temporais é chamado TARX - Threshold Autoregressive with eXternal variables-. A idéia central é encontrar limiares que separem regimes que podem ser explicados através de modelos lineares. Este processo é um algoritmo que preserva o método de regressão por mínimos quadrados recursivo -MQR-. Combinando a árvore de decisão com a técnica de regressão -MQR-, o modelo se tornou o TS-TARX -Tree Structured - Threshold AutoRegression with external variables-.Será estendido aqui o trabalho iniciado por Aranha em -1, 2001-. Onde a partir de uma base de dados conhecida, um algoritmo eficiente gera uma árvore de decisão por meio de regras, e as equações de regressão estimadas para cada um dos regimes encontrados. Este procedimento pode gerar alguns modelos espúrios ou por construção,devido a divisão binária da árvore, ou pelo fato de não existir neste momento uma metodologia de comparação dos modelos resultantes.Será proposta uma metodologia através de sucessivos testes de Chow -5, 1960- que identificará modelos espúrios e reduzirá a quantidade de regimes encontrados, e consequentemente de parâmetros a estimar. A complexidade do modelo final gerado é reduzida a partir da identificação de redundâncias, sem perder o poder preditivo dos modelos TS-TARX .O trabalho conclui com exemplos ilustrativos e algumas aplicações em bases de dados sintéticas, e casos reais que auxiliarão o entendimento. / [en] The goal of this dissertation is to propose a test mechanism to evaluate the results obtained from the TS-TARX modeling procedure.The main motivation is to find a solution to a usual problem related to TS-TARX modeling: spurious models are generated in the process of dividing the space state of the independent variables.The model is a heuristics based on regression tree analysis, as discussed by Brieman -3, 1984-. The model used to estimate the parameters of the time series is a TARX -Threshold Autoregressive with eXternal variables-.The main idea is to find thresholds that split the independent variable space into regimes which can be described by a local linear model. In this process, the recursive least square regression model is preserved. From the combination of regression tree analysis and recursive least square regression techniques, the model becomes TS-TARX -Tree Structured - Threshold Autoregression with eXternal variables-.The works initiated by Aranha in -1, 2001- will be extended. In his works, from a given data base, one efficient algorithm generates a decision tree based on splitting rules, and the corresponding regression equations for each one of the regimes found.Spurious models may be generated either from its building procedure, or from the fact that a procedure to compare the resulting models had not been proposed.To fill this gap, a methodology will be proposed. In accordance with the statistical tests proposed by Chow in -5, 196-, a series of consecutive tests will be performed.The Chow tests will provide the tools to identify spurious models and to reduce the number of regimes found. The complexity of the final model, and the number of parameters to estimate are therefore reduced by the identification and elimination of redundancies, without bringing risks to the TS-TARX model predictive power.This work is concluded with illustrative examples and some applications to real data that will help the readers understanding.
23

[en] APPLICATION OF NONLINEAR MODELS FOR AUTOMATIC TRADING IN THE BRAZILIAN STOCK MARKET / [pt] APLICAÇÃO DE MODELOS NÃO LINEARES EM NEGOCIAÇÃO AUTOMÁTICA NO MERCADO ACIONÁRIO BRASILEIRO

THIAGO REZENDE PINTO 16 October 2006 (has links)
[pt] Esta dissertação tem por objetivo comparar o desempenho de modelos não lineares de previsão de retornos em 10 ativos do mercado acionário brasileiro. Entre os modelos escolhidos, pode-se citar o STAR-Tree, que combina conceitos da metodologia STAR (Smooth Transition AutoRegression) e do algoritmo CART (Classification And Regression Trees), tendo como resultado final uma regressão com transição suave entre múltiplos regimes. A especificação do modelo é feita através de testes de hipótese do tipo Multiplicador de Lagrange que indicam o nó a ser dividido e a variável explicativa correspondente. A estimação dos parâmetros é feita pelo método de Mínimos Quadrados Não Lineares para determinar o valor dos parâmetros lineares e não lineares. Redes Neurais, modelos ARMAX (estes lineares) e ainda o método Naive também foram incluídos na análise. Os resultados das previsões foram avaliados a partir de medidas estatísticas e financeiras e se basearam em um negociador automático que informa o instante correto de assumir uma posição comprada ou vendida em cada ativo. Os melhores desempenhos foram alcançados pelas Redes Neurais, pelos modelos ARMAX e pela forma de previsão ARC (Adaptative Regime Combination) derivada da metodologia STAR-Tree, sendo ambos ainda superiores ao retorno das ações durante o período de teste / [en] The goal of this dissertation is to compare the performance of non linear models to forecast return on 10 equities in the Brazilian Stock Market. Among the chosen ones, it can be cited the STAR-Tree, which matches concepts from the STAR (Smooth Transition AutoRegression) methodology and the CART (Classification And Regression Trees) algorithm, having as the resultant structure a regression with smooth transition among multiple regimes. The model specification is done by Lagrange Multiplier hypothesis tests that indicate the node to be splitted and the corresponding explanatory variable. The parameter estimation is done by the Non Linear Least Squares method that determine the linear and non linear parameters. Neural Netwoks, ARMAX models (these ones linear) and the Naive method were also included in the analysis. The forecasting results were calculated using statistical and financial measures and were based on an automatic negociator that signaled the right instant to take a short or a long position in each stock. The best results were reached by the Neural Networks, ARMAX models and ARC (Adaptative Regime Combination ) forecasting method derived from STAR-Tree, with all of them performing better then the equity return during the test period.
24

[en] TREE-STRUCTURED SMOOTH TRANSITION REGRESSION MODELS / [pt] MODELOS DE REGRESSÃO COM TRANSIÇÃO SUAVE ESTRUTURADOS POR ÁRVORES

JOEL MAURICIO CORREA DA ROSA 22 July 2005 (has links)
[pt] O objetivo principal desta tese introduzir um modelo estruturado por árvores que combina aspectos de duas metodologias: CART (Classification and Regression Tree) e STR (Smooth Transition Regression). O modelo aqui denominado STR-Tree. A idéia especificar um modelo não-linear paramétrico através da estrutura de uma árvore de decisão binária. O modelo resultante pode ser analisado como uma regressão com transição suave entre múltiplos regimes. As decisões sobre as divisões dos nós são inteiramente baseadas em testes do tipo Multiplicadores de Lagrange. Uma especificação alternativa baseada em validação cruzada também utilizada. Um experimento de Monte Carlo utilizado para avaliar o desempenho da metodologia proposta comparando-a com outras técnicas comumente utilizadas. Como resultado verifica-se que o modelo STR- Tree supera o tradicional CART quando seleciona a arquitetura de árvores simuladas. Além do mais, utilizar testes do tipo Multiplicadores de Lagrange gera resultados melhores do que procedimentos de validação cruzada. Quando foram utilizadas bases de dados reais, o modelo STR-Tree demonstrou habilidade preditiva superior ao CART. Através de uma aplicação, extende-se a metodologia para a análise de séries temporais. Neste caso, o modelo denominado STAR- Tree, sendo obtido através de uma árvore de decisão binária que ajusta modelos autoregressivos de primeira ordem nos regimes. A série de retornos da taxa de câmbio Euro/Dólar foi modelada e a capacidade preditiva e o desempenho financeiro do modelo foi comparado com metodologias padrões como previsões ingênuas e modelos ARMA. Como resultado obtido um modelo parcimonioso que apresenta desempenho estatístico equivalente às estratégias convencionais, porém obtendo resultados financeiros superiores. / [en] He main goal of this Thesis is to introduce a tree- structured model that combines aspects from two methodologies: CART (Classification and Regression Trees) and STR (Smooth Transition Regression). The model is called STR-Tree, The idea is to specify a nonlinear parametric model through the structure of a binary decision tree. The resulting modelo can be analyzed as a smooth transition regression model with multiple regimes. The decisions for splitting the nodes of the tree are entirely based on Lagrange Multipliers tests. An alternative specification that uses cross- validation is also tried. A Monte Carlo Experiment is used to evaluate the performance of the proposed methodology and to compare with other techniques that are commonly used. The results showed that the STRTree model outperformed the traditional CART when specifying the architecture of a simulated tree. Moreover, the use of Lagrange Multipliers tests gave better results than a cross-validation procedure. After applying the model to real datasets, it could be seen that STR-Tree showed superior predictive ability when compared to CART. The idea was extended to time series analysis through an application. In this situation, we call the model as STAR- Tree which is obtained through a binary decision tree that fits first-order autoregressive models for different regimes. The model was fitted to the returns of Euro/Dolar exchange rate time series and then evaluated statistically and financially. Comparing with the naive approach and ARMA methodology, the STAR-Tree was parsimonious and presented statistical performance equivalent to others. The financial results were better than the others.

Page generated in 0.1077 seconds