Spelling suggestions: "subject:"3analyse dde changements"" "subject:"3analyse dee changements""
1 |
SAFE-NEXT : UNE APPROCHE SYSTEMIQUE POUR L'EXTRACTION DE CONNAISSANCES DE DONNEES.<br />Application A La Construction Et A L'interprétation De Scénarios D'accidents De La RouteBen Ahmed, Walid 17 January 2005 (has links) (PDF)
Aujourd'hui, l'informatisation des saisies de données et la puissance des systèmes de collecte conduisent à la construction de grandes Bases de Données (BD). L'exploitation de ces millions de données en accidentologie et dans beaucoup d'autres domaines (e.g. management, marketing, etc.) fait appel à des techniques d'Extraction de Connaissances de Données (ECD). La complexité des données, du domaine d'application et des connaissances recherchées rendent fondamentale l'intégration des connaissances expertes dans le processus d'ECD. Cela nécessite la mise en place d'approches, méthodes et techniques d'identification, de représentation et d'opérationnalisation de ces connaissances.<br />Dans ce travail de thèse, nous proposons une nouvelle approche, appelée SAFE-Next (Systemic Approach For Enhanced kNowledge EXTraction, approche systémique pour l'extraction des connaissances) qui intègre les quatre approches suivantes : La première est appelée ASMEC (Approche Systémique de ModElisation des Connaissances). Elle consiste en une méthode de modélisation des connaissances multi-vues et selon une architecture à plusieurs niveaux d'abstraction. La deuxième approche, AICEF (Approche d'Incorporation des Connaissances Expertes dans la Fouille de données), propose l'élaboration et l'utilisation de méta-données multi-vues comme un moyen pour l'incorporation des connaissances formalisées par ASMEC dans le processus d'ECD. La troisième approche, ASAIC (Approche Systémique d'Analyse d'Impact de Changement), utilise le modèle de connaissances d'ASMEC pour une analyse interactive et multi-vues de l'impact d'un changement sur un système. La quatrième approche, ASEM (Approche Systémique d'Evaluation de Modèles), fournit un modèle général d'évaluation de modèles de connaissances. <br />Les fondements épistémologiques et méthodologiques de nos travaux sont respectivement le constructivisme et la systémique (ou cybernétique). En se basant sur ces fondements, nos travaux de recherche ont conduit à des contributions réparties en quatre domaines : En accidentologie, SAFE-Next fournit un outil efficace pour l'élaboration des STA permettant une meilleure analyse et compréhension de l'accident. Elle fournit aussi un moyen de capitalisation des connaissances offrant une vision synthétique des différents types de connaissances du domaine de l'accidentologie. En Ingénierie des Connaissances (IC), SAFE-Next propose un modèle général multi-vues et multi-niveaux d'abstraction de modélisation des connaissances pour le développement des Systèmes à Base de Connaissances (SBC). Elle permet aussi de guider l'élicitation des connaissances selon un modèle multi-vues. En ECD, SAFE-Next propose l'utilisation des métadonnées multi-vues pour l'incorporation des connaissances expertes du domaine dans la première et la dernière phase du processus d'ECD (i.e. préparation des données et interprétation des résultats). En conception de nouveaux systèmes, SAFE-Next fournit à travers les STA un moyen de communication entre les accidentologistes et les concepteurs des systèmes de sécurité embarqués dans les véhicules. Cette interface entre les deux métiers (i.e. conception et accidentologie) permet la construction de l'espace de conception pour développer et évaluer les systèmes de sécurité. Elle offre aussi un moyen d'analyse de l'impact d'un changement (e.g. introduction d'un nouveau système de sécurité) sur le comportement du système Conducteur-Véhicule-Environnement.
|
2 |
Extraction d'informations de changement à partir des séries temporelles d'images radar à synthèse d'ouverture / Change information extraction from Synthetic Aperture Radar Image Time SeriesLê, Thu Trang 15 October 2015 (has links)
La réussite du lancement d'un grand nombre des satellites Radar à Synthèse d'Ouverture (RSO - SAR) de nouvelle génération a fourni régulièrement des images SAR et SAR polarimétrique (PolSAR) multitemporelles à haute et très haute résolution spatiale sur de larges régions de la surface de la Terre. Le système SAR est approprié pour des tâches de surveillance continue ou il offre l'avantage d'être indépendant de l'éclairement solaire et de la couverture nuageuse. Avec des données multitemporelles, l'information spatiale et temporelle peut être exploitée simultanément pour rendre plus concise, l'extraction d'information à partir des données. La détection de changement de structures spécifiques dans un certain intervalle de temps nécessite un traitement complexe des données SAR et la présence du chatoiement (speckle) qui affecte la rétrodiffusion comme un bruit multiplicatif. Le but de cette thèse est de fournir une méthodologie pour simplifier l'analyse des données multitemporelles SAR. Cette méthodologie doit bénéficier des avantages d'acquisitions SAR répétitives et être capable de traiter différents types de données SAR (images SAR mono-, multi- composantes, etc.) pour diverses applications. Au cours de cette thèse, nous proposons tout d'abord une méthode générale basée sur une matrice d'information spatio-temporelle appelée Matrice de détection de changement (CDM). Cette matrice contient des informations de changements obtenus à partir de tests croisés de similarité sur des voisinages adaptatifs. La méthode proposée est ensuite exploitée pour réaliser trois tâches différentes: 1) la détection de changement multitemporel avec différents types de changements, ce qui permet la combinaison des cartes de changement entre des paires d'images pour améliorer la performance de résultat de détection de changement; 2) l'analyse de la dynamicité de changement de la zone observée, ce qui permet l'étude de l'évolution temporelle des objets d'intérêt; 3) le filtrage nonlocal temporel des séries temporelles d'images SAR/PolSAR, ce qui permet d'éviter le lissage des informations de changement dans des séries pendant le processus de filtrage.Afin d'illustrer la pertinence de la méthode proposée, la partie expérimentale de la thèse est effectuée sur deux sites d'étude: Chamonix Mont-Blanc, France et le volcan Merapi, Indonésie, avec différents types de changements (i.e. évolution saisonnière, glaciers, éruption volcanique, etc.). Les observations de ces sites d'étude sont acquises sur quatre séries temporelles d'images SAR monocomposantes et multicomposantes de moyenne à haute et très haute résolution: des séries temporelles d'images Sentinel-1, ALOS-PALSAR, RADARSAT-2 et TerraSAR-X. / A large number of successfully launched and operated Synthetic Aperture Radar (SAR) satellites has regularly provided multitemporal SAR and polarimetric SAR (PolSAR) images with high and very high spatial resolution over immense areas of the Earth surface. SAR system is appropriate for monitoring tasks thanks to the advantage of operating in all-time and all-weather conditions. With multitemporal data, both spatial and temporal information can simultaneously be exploited to improve the results of researche works. Change detection of specific features within a certain time interval has to deal with a complex processing of SAR data and the so-called speckle which affects the backscattered signal as multiplicative noise.The aim of this thesis is to provide a methodology for simplifying the analysis of multitemporal SAR data. Such methodology can benefit from the advantages of repetitive SAR acquisitions and be able to process different kinds of SAR data (i.e. single, multipolarization SAR, etc.) for various applications. In this thesis, we first propose a general framework based on a spatio-temporal information matrix called emph{Change Detection Matrix} (CDM). This matrix contains temporal neighborhoods which are adaptive to changed and unchanged areas thanks to similarity cross tests. Then, the proposed method is used to perform three different tasks:1) multitemporal change detection with different kinds of changes, which allows the combination of multitemporal pair-wise change maps to improve the performance of change detection result;2) analysis of change dynamics in the observed area, which allows the investigation of temporal evolution of objects of interest;3) nonlocal temporal mean filtering of SAR/PolSAR image time series, which allows us to avoid smoothing change information in the time series during the filtering process.In order to illustrate the relevancy of the proposed method, the experimental works of the thesis is performed on four datasets over two test-sites: Chamonix Mont-Blanc, France and Merapi volcano, Indonesia, with different types of changes (i.e., seasonal evolution, glaciers, volcanic eruption, etc.). Observations of these test-sites are performed on four SAR images time series from single polarization to full polarization, from medium to high, very high spatial resolution: Sentinel-1, ALOS-PALSAR, RADARSAT-2 and TerraSAR-X time series.
|
Page generated in 0.0793 seconds