Spelling suggestions: "subject:"3analyse dde chemin dde transfert"" "subject:"3analyse dde chemin dee transfert""
1 |
Caractérisation expérimentale et numérique de la transmission acoustique de structures aéronautique : effets du couplage et de l'excitationCherif, Raef January 2015 (has links)
La prédiction du bruit intérieur d’un habitacle typique d’un avion nécessite la modélisation vibroacoustique de l’ensemble fuselage et la compréhension des mécanismes gouvernant la transmission acoustique à travers ces structures. Ce projet a pour objectifs de développer et mettre en place un modèle hybride expérimentale-numérique rapide et précis permettant de prédire la transmission acoustique à travers ces structures soumises à des excitations aériennes et solidiennes. Le but est d’élucider les mécanismes de transmission acoustique afin de réduire la transmission solidienne de vibrations mécaniques ainsi que diminuer la transmission acoustique du bruit dans la cabine. À ce propos, une double-parois représentative d’avion est modélisée par la méthode de l’analyse statistique énergétique (SEA). Le modèle utilisé est basé sur la connaissance des différents indicateurs vibroacoustique; spécifiquement le nombre d'onde, la densité modale, le facteur de perte par amortissement, le facteur de perte par couplage et l’efficacité par rayonnement. La tâche est rendue davantage difficile par les complexités mécaniques et physiques mises en jeu.
Une première partie porte sur la caractérisation expérimentale du facteur de perte par amortissement des structures sandwich composites. Une nouvelle méthode expérimentale de mesure de l’amortissement dénommée IWM (Inverse Wave Method) est mise en place. Elle se base sur la mesure du nombre d’ondes complexe. Il ressort que la méthode développée présente plus de stabilité dans les résultats obtenus tant numériques qu’expérimentaux.
La deuxième partie de cette étude est totalement dédiée à l’efficacité de rayonnement. La mesure de l’efficacité de rayonnement est étudiée par une approche énergétique statistique des structures suspendues en libre libre et non bafflée dans une chambre réverbérante. La mesure est validée sur une large bande de fréquences pour plusieurs types de constructions.
La troisième partie porte sur une validation expérimentale détaillée d'un modèle sandwich (General Laminate Model). À partir des propriétés mécaniques des structures aéronautiques étudiées, le modèle sandwich permet de prédire leurs comportements vibroacoustique. La précision de ce modèle est étudiée sur une large bande de fréquences.
Enfin, la transmission acoustique d’une double paroi avec des connexions structurales entre les deux panneaux est étudiée. Les voies de transmission dominantes sont identifiées dans la gamme de fréquences entre 100 Hz et 10 kHz pour des doubles parois sous champ diffus. La transmission non-résonante est plus importante en basses fréquences alors que les parties structurale et aérienne dominent respectivement en moyennes et hautes fréquences. Une validation avec des résultats expérimentaux montre que le modèle est capable de prédire les changements au niveau de la transmission, causés par les différents couplages structuraux (couplage rigide, couplage souple). L’objectif final étant évidemment de réduire le niveau de bruit dans la cabine.
|
2 |
Modélisation vibroacoustique de double-parois aéronautiques avec liens mécaniques par la méthode de l'analyse statistique énergétiqueCampolina, Bruno 12 June 2012 (has links) (PDF)
La prédiction du bruit intérieur des avions nécessite la modélisation vibroacoustique de l'ensemble fuselage et traitements acoustiques. Cet ensemble est composé d'un panneau raidi métallique ou composite, sur lequel est posé un traitement thermo-acoustique (laine de verre) et connecté par des liens anti-vibratiles à un panneau d'habillage de type sandwich nid d'abeille. L'objectif de ce travail consiste à optimiser les traitements acoustiques en prenant en compte les contraintes de design telles que la masse et les dimensions. A ce propos, une double-paroi représentative d'avion est modélisée par la méthode de l'analyse statistique énergétique (SEA). Des excitations académiques telles que le champ diffus et la force ponctuelle sont utilisées et des tendances sont données pour des applications sous excitation aérodynamique, du type couche limite turbulente. Une première partie porte sur l'effet de compression d'une couche poreuse. Pour des applications aéronautiques, la compression de ce type de matériaux peut se produire lors de l'installation d'équipements et câbles. Elle est étudiée, de manière analytique et expérimentale, pour une simple-paroi recouverte par une couche de matériau fibreux. Le matériau est comprimé sur toute sa surface. Une réduction de la perte par transmission (TL) jusqu'à 5 dB est observée principalement en moyennes fréquences (autour de 800 Hz) lorsque l'épaisseur du poreux est comprimé de 50%. Cependant pour des cas plus réalistes, cet effet est supposé moins important pour une compression locale et plus faible. Dans une seconde partie, la transmission par les connections structurales entre panneaux est étudiée par une approche quadripolaire qui relie la paire force-vitesse de chaque côté du lien mécanique. La modélisation intègre la raideur dynamique mesurée par un banc d'essai dédié. La transmission structurale est par la suite validée avec des essais et intégrée au modèle de double-paroi comme un facteur de couplage entre panneaux. Comme les structures sont non-courbées, seule la transmission axiale est considérée. Enfin, les voies de transmission dominantes sont identifiées dans la gamme de fréquences entre 100 Hz et 10 kHz pour des double-parois sous champ diffus et sous excitation structurale ponctuelle. La transmission non-résonante est plus importante en basses fréquences (jusqu'à 1 kHz) alors que les parties structurale et aérienne dominent respectivement en moyennes et hautes fréquences. Une validation avec des résultats expérimentaux montre que le modèle est capable de prédire les changements au niveau de la transmission, causés par les différents couplages structuraux (couplage rigide, couplage via liens anti-vibratiles et découplage structural). Des différentes solutions en termes de traitement acoustique, comme par exemple l'absorption, l'amortissement et le découplage structural, peuvent par la suite être dérivées.
|
Page generated in 0.1276 seconds