Spelling suggestions: "subject:"3analyse dde comportement"" "subject:"3analyse dee comportement""
1 |
Analyse vidéo de comportements humains dans les points de ventes en temps-réelSicre, Ronan 24 May 2011 (has links)
Cette thèse est effectuée en collaboration entre le LaBRI (Laboratoire bordelais de recherche en informatique) et MIRANE S.A.S., le leader français en Publicité sur Lieu de Vente (PLV) Dynamique. Notre but est d'analyser des comportements humains dans un point de vente. Le long de cette thèse, nous présentons un système d'analyse vidéo composé de plusieurs procédés de divers niveaux. Nous présentons, dans un premier temps, l'analyse vidéo de bas niveau composée de la détection de mouvement et du suivi d'objets. Puis nous analysons le comportement de ces objets suivis, lors de l'analyse de niveau moyen. Finalement, l'analyse de haut-niveau est composée d'une interprétation sémantique de ces comportements et d'une détection de scenarios de haut-niveau. / Along this thesis various subjects are studied, from the lowest to the higher level of video analysis. We first present motion detection and object tracking that compose the low-level processing part of our system. Motion detection aims at detecting moving areas, which correspond to foreground, of an image. The result of motion detection is a foreground mask that is used as input for the object tracking process. Tracking matches and identifies foreground regions across frames. Then, we analyze the behavior of the tracked objects, as the mid-level analysis. At each frame, we detect the current state of action of each tracked object currently in the scene. Finally, the system generates a semantic interpretation of these behaviors and we analyze high-level scenarios as the high-level part of our system. These two processes analyze the series of states of each object. The semantic interpretation generates sentences when state changes occur. Scenario recognition detect three different scenarios by analyzing the temporal constraints between the states.
|
2 |
Méthodologie d’extraction de connaissances spatio-temporelles par fouille de données pour l’analyse de comportements à risques : application à la surveillance maritime / Methodology of spatio-temporal knowledge discovery through data mining for risk behavior analysis : application to maritime traffic monitoringIdiri, Bilal 17 December 2013 (has links)
Les progrès technologiques en systèmes de localisation (AIS, radar, GPS, RFID, etc.), de télétransmission (VHF, satellite, GSM, etc.), en systèmes embarqués et leur faible coût de production a permis leur déploiement à une large échelle. Énormément de données sur les déplacements d'objets sont produites par le biais de ces technologies et utilisées dans diverses applications de surveillance temps-réel comme la surveillance du trafic maritime. L'analyse a posteriori des données de déplacement de navires et d'événements à risques peut présenter des perspectives intéressantes pour la compréhension et l'aide à la modélisation des comportements à risques. Dans ce travail de thèse une méthodologie basée sur la fouille de données spatio-temporelle est proposée pour l'extraction de connaissances sur les comportements potentiellement à risques de navires. Un atelier d'aide à l'analyse de comportements de navires fondé sur cette méthodologie est aussi proposé. / The advent of positioning system technologies (AIS, radar, GPS, RFID, etc.), remote transmission (VHF, satellite, GSM, etc.), technological advances in embedded systems and low cost production, has enabled their deployment on a large scale. A huge amount of moving objects data are collected through these technologies and used in various applications such as real time monitoring surveillance of maritime traffic. The post-hoc analysis of data from moving ships and risk events may present interesting opportunities for the understanding and modeling support of risky behaviors. In this work, we propose a methodology based on Spatio-Temporal Data Mining for the knowledge discovery about potentially risky behaviors of ships. Based on this methodology, a workshop to support the analysis of behavior of ships is also proposed.
|
3 |
Méthodologie d'extraction de connaissances spatio-temporelles par fouille de données pour l'analyse de comportements à risques : application à la surveillance maritimeIdiri, Bilal 17 December 2013 (has links) (PDF)
Les progrès technologiques en systèmes de localisation (AIS, radar, GPS, RFID, etc.), de télétransmission (VHF, satellite, GSM, etc.), en systèmes embarqués et leur faible coût de production a permis leur déploiement à une large échelle. Énormément de données sur les déplacements d'objets sont produites par le biais de ces technologies et utilisées dans diverses applications de surveillance temps-réel comme la surveillance du trafic maritime. L'analyse a posteriori des données de déplacement de navires et d'événements à risques peut présenter des perspectives intéressantes pour la compréhension et l'aide à la modélisation des comportements à risques. Dans ce travail de thèse une méthodologie basée sur la fouille de données spatio-temporelle est proposée pour l'extraction de connaissances sur les comportements potentiellement à risques de navires. Un atelier d'aide à l'analyse de comportements de navires fondé sur cette méthodologie est aussi proposé.
|
Page generated in 0.1243 seconds