• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La régression de Poisson multiniveau généralisée au sein d’un devis longitudinal : un exemple de modélisation du nombre d’arrestations de membres de gangs de rue à Montréal entre 2005 et 2007

Rivest, Amélie 12 1900 (has links)
Les données comptées (count data) possèdent des distributions ayant des caractéristiques particulières comme la non-normalité, l’hétérogénéité des variances ainsi qu’un nombre important de zéros. Il est donc nécessaire d’utiliser les modèles appropriés afin d’obtenir des résultats non biaisés. Ce mémoire compare quatre modèles d’analyse pouvant être utilisés pour les données comptées : le modèle de Poisson, le modèle binomial négatif, le modèle de Poisson avec inflation du zéro et le modèle binomial négatif avec inflation du zéro. À des fins de comparaisons, la prédiction de la proportion du zéro, la confirmation ou l’infirmation des différentes hypothèses ainsi que la prédiction des moyennes furent utilisées afin de déterminer l’adéquation des différents modèles. Pour ce faire, le nombre d’arrestations des membres de gangs de rue sur le territoire de Montréal fut utilisé pour la période de 2005 à 2007. L’échantillon est composé de 470 hommes, âgés de 18 à 59 ans. Au terme des analyses, le modèle le plus adéquat est le modèle binomial négatif puisque celui-ci produit des résultats significatifs, s’adapte bien aux données observées et produit une proportion de zéro très similaire à celle observée. / Count data have distributions with specific characteristics such as non-normality, heterogeneity of variances and a large number of zeros. It is necessary to use appropriate models to obtain unbiased results. This memoir compares four models of analysis that can be used for count data: the Poisson model, the negative binomial model, the Poisson model with zero inflation and the negative binomial model with zero inflation. For purposes of comparison, the prediction of the proportion of zero, the confirmation or refutation of the various assumptions and the prediction of average number of arrrests were used to determine the adequacy of the different models. To do this, the number of arrests of members of street gangs in the Montreal area was used for the period 2005 to 2007. The sample consisted of 470 men, aged 18 to 59 years. After the analysis, the most suitable model is the negative binomial model since it produced significant results, adapts well to the observed data and produces a zero proportion very similar to that observed.
2

La régression de Poisson multiniveau généralisée au sein d’un devis longitudinal : un exemple de modélisation du nombre d’arrestations de membres de gangs de rue à Montréal entre 2005 et 2007

Rivest, Amélie 12 1900 (has links)
Les données comptées (count data) possèdent des distributions ayant des caractéristiques particulières comme la non-normalité, l’hétérogénéité des variances ainsi qu’un nombre important de zéros. Il est donc nécessaire d’utiliser les modèles appropriés afin d’obtenir des résultats non biaisés. Ce mémoire compare quatre modèles d’analyse pouvant être utilisés pour les données comptées : le modèle de Poisson, le modèle binomial négatif, le modèle de Poisson avec inflation du zéro et le modèle binomial négatif avec inflation du zéro. À des fins de comparaisons, la prédiction de la proportion du zéro, la confirmation ou l’infirmation des différentes hypothèses ainsi que la prédiction des moyennes furent utilisées afin de déterminer l’adéquation des différents modèles. Pour ce faire, le nombre d’arrestations des membres de gangs de rue sur le territoire de Montréal fut utilisé pour la période de 2005 à 2007. L’échantillon est composé de 470 hommes, âgés de 18 à 59 ans. Au terme des analyses, le modèle le plus adéquat est le modèle binomial négatif puisque celui-ci produit des résultats significatifs, s’adapte bien aux données observées et produit une proportion de zéro très similaire à celle observée. / Count data have distributions with specific characteristics such as non-normality, heterogeneity of variances and a large number of zeros. It is necessary to use appropriate models to obtain unbiased results. This memoir compares four models of analysis that can be used for count data: the Poisson model, the negative binomial model, the Poisson model with zero inflation and the negative binomial model with zero inflation. For purposes of comparison, the prediction of the proportion of zero, the confirmation or refutation of the various assumptions and the prediction of average number of arrrests were used to determine the adequacy of the different models. To do this, the number of arrests of members of street gangs in the Montreal area was used for the period 2005 to 2007. The sample consisted of 470 men, aged 18 to 59 years. After the analysis, the most suitable model is the negative binomial model since it produced significant results, adapts well to the observed data and produces a zero proportion very similar to that observed.

Page generated in 0.13 seconds