• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluidic microchemomechanical integrated circuits processing chemical information

Greiner, Rinaldo, Allerdissen, Merle, Voigt, Andreas, Richter, Andreas 08 April 2014 (has links) (PDF)
Lab-on-a-chip (LOC) technology has blossomed into a major new technology fundamentally influencing the sciences of life and nature. From a systemic point of view however, microfluidics is still in its infancy. Here, we present the concept of a microfluidic central processing unit (CPU) which shows remarkable similarities to early electronic Von Neumann microprocessors. It combines both control and execution units and, moreover, the complete power supply on a single chip and introduces the decision-making ability regarding chemical information into fluidic integrated circuits (ICs). As a consequence of this system concept, the ICs process chemical information completely in a self-controlled manner and energetically self-sustaining. The ICs are fabricated by layer-by-layer deposition of several overlapping layers based on different intrinsically active polymers. As examples we present two microchips carrying out long-term monitoring of critical parameters by around-the-clock sampling. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
2

Fluidic microchemomechanical integrated circuits processing chemical information

Greiner, Rinaldo, Allerdissen, Merle, Voigt, Andreas, Richter, Andreas January 2012 (has links)
Lab-on-a-chip (LOC) technology has blossomed into a major new technology fundamentally influencing the sciences of life and nature. From a systemic point of view however, microfluidics is still in its infancy. Here, we present the concept of a microfluidic central processing unit (CPU) which shows remarkable similarities to early electronic Von Neumann microprocessors. It combines both control and execution units and, moreover, the complete power supply on a single chip and introduces the decision-making ability regarding chemical information into fluidic integrated circuits (ICs). As a consequence of this system concept, the ICs process chemical information completely in a self-controlled manner and energetically self-sustaining. The ICs are fabricated by layer-by-layer deposition of several overlapping layers based on different intrinsically active polymers. As examples we present two microchips carrying out long-term monitoring of critical parameters by around-the-clock sampling. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0591 seconds