• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisations de composants et Conceptions de circuits à base d’une filière émergente AlN/GaN pour applications de puissance en gamme d’ondes millimétriques / Circuit design and characterization of devices based on AlN/GaN double heterostructure for millimeter-wave power applications

Kabouche, Riad 20 December 2017 (has links)
La technologie Nitrure de Gallium s’impose actuellement comme le candidat idéal pour les applications de forte Puissance en gamme d’ondes millimétriques. Les caractéristiques de ce matériau le prédisposent à un fonctionnement à haute tension sans sacrifier la montée en fréquence, illustrées par son champ de claquage et sa vitesse de saturation des électrons élevés. Ces travaux de recherche s’inscrivent, dans un premier temps, dans le développement d’un banc de mesures permettant la caractérisation « grand signal », dite LoadPull dans la bande Ka et Q, en mode continu et impulsionnel de cette technologie émergente. En effet, la forte densité de puissance qu’est capable de générer la technologie GaN a rendu le développement de ce banc indispensable et relativement unique. Par ailleurs, cette étude s’est focalisée, dans la caractérisation de plusieurs filières innovantes qui ont mis en évidence des performances à l’état de l’art, avec un rendement en puissance ajoutée PAE de 46.3% associée à une densité de puissance de 4.5W/mm obtenue pour une fréquence d’opération de 40 GHz en mode continu. Enfin, ces travaux de thèse ont permis de générer la conception et la réalisation de deux amplificateurs de puissance en technologie GaN sur substrat silicium (basée sur la filière industrielle OMMIC) en bande Ka, représentant la finalité d’une démarche cohérente de l’étude de transistors en technologie GaN à la réalisation de circuits de type MMIC. Ces deux amplificateurs ont été conçus pour des objectifs biens précis : combiner puissance élevée et rendement PAE élevé et repousser les limites en termes de largeur de bande. / Gallium Nitride (GaN) technology is now the ideal candidate for high power applications in the millimeter wave range. The characteristics of this material enable high voltage operation at high frequency, as illustrated by its breakdown field and high electron saturation velocity. This research work has initially allowed the development of a test bench capable of "Large Signal" characterization, called LoadPull up to Q band, in continuous-wave and pulsed mode of this emerging technology. Indeed, the high power density generated by the GaN technology has made the development of this bench unavoidable and relatively unique. In addition, this study has focused on the characterization of several innovative types of devices that have demonstrated state-of-the-art performance, with a power added efficiency (PAE) above 46% associated to a power density of 4.5 W/mm obtained for an operating frequency of 40 GHz in continuous-wave. Finally, this work aimed the design and fabrication of two power amplifiers on silicon substrate (based on the industrial OMMIC technology) in the Ka-band, showing the possibility of achieving MMIC type circuits from advanced GaN transistors technology. These two amplifiers were designed for specific purposes: combining high power and high PAE performance and pushing bandwidth limits.
2

Caractérisation hyperfréquence sous pointes de nano-dispositifs : métrologie et instrumentation / On-wafer microwave characterization of nano-devices : metrology and instrumentation

Daffé, Khadim 20 December 2018 (has links)
Dans un contexte de développement spectaculaire des nano-objets, il est nécessaire de développer des moyens de caractérisation électrique haute fréquence sous pointes adaptés aux petites échelles. En particulier, deux verrous instrumentaux doivent être levés. D’une part, la principale difficulté pour caractériser des nano-composants est qu’ils présentent en régime dynamique de fortes valeurs d’impédances comparativement à celles des systèmes de mesure hyperfréquence usuels. D’autre part, Il existe une discontinuité de taille entre les nano-objets et les systèmes de mesure conventionnels. Compte tenu du challenge scientifique et d’un état de l’art relativement limité, plusieurs voies ont été explorées de concert. En premier lieu, dans le cadre d’un projet européen regroupant les acteurs de la métrologie, et du laboratoire commun IEMN-STMicroelectronics®, la traçabilité des mesures hautes impédances de nano-dispositifs est établie. Par ailleurs, il s’agit de développement de nouvelles générations de sondes GSG (Ground-Signal-Ground) en technologie MEMS (Microelectromechanical systems), miniaturisées et adaptées à la taille des nano-dispositifs. Les sondes sont montées sur une plateforme de nano-positionnement robotisée et intégrée dans un microscope électronique à balayage. / In the frame of the spectacular development of nano-objects, innovative on-wafer electrical measurement methods must be addressed at the nanoscale. In particular, two main issues have been identified. On one hand, nano-devices exhibit very high dynamic impedance in contrast with conventional measuring microwave instruments. On the other hand, there is an inherent size discontinuity between nano-objects and conventional measurement systems. Given the scientific challenge and a relatively limited state of the art, several avenues of investigation have been explored. First, as part of a European project bringing together metrology laboratories, and the joint laboratory IEMN-STMicroelectronics®, the traceability of nano-devices high impedance measurements is established. In a second step, the development of an electrical on-wafer measuring platform for nano-devices is described. This includes the development of new generations of GSG (Ground-Signal-Ground) miniaturized probes in MEMS (Microelectromechanical systems) technology with reduced access pads. The probes are mounted on a robotic nano-positioning platform integrated in a scanning electron microscope.
3

Etude et Traçabilité du calibrage " Line - Attenuator - Reflect", pour les mesures sous pointes à l'aide d'un analyseur de réseau vectoriel

Bahouche, Mebrouk 02 December 2010 (has links) (PDF)
Les paramètres S constituent l'une des grandeurs de base de l'électricité-magnétisme dans le domaine radiofréquence. Ils sont normalisés par rapport à une valeur d'impédance dite de référence et sont mesurés à l'aide d'un analyseur de réseau vectoriel (Vector Network Analyzer (VNA)). La précision des paramètres S des composants micro-ondes avec un analyseur de réseau vectoriel (VNA) dépend de l'exactitude du calibrage utilisé pour corriger les erreurs inhérentes au système. Le calibrage consiste à mesurer des dispositifs particuliers plus ou moins bien connus, que l'on appelle étalons, afin de déterminer les erreurs systématiques du système avant la mesure du composant. Les coefficients d'erreurs calculés à partir de l'étalonnage seront utilisés pour caractériser les vrais paramètres S du dispositif. La procédure de calibrage LAR (Line-Attenuator-Reflect), intégrée dans les analyseurs de réseau modernes et qui permet une large bande de mesure avec un nombre limité d'étalons de référence sur wafer, est particulièrement attractive. Par contre, peu d'études sont réalisées pour évaluer sa traçabilité. C'est pourquoi le LNE (Laboratoire National de Métrologie et d'Essais) a décidé de mener des études afin d'évaluer la traçabilité et la précision de mesure quand la méthode de calibrage LAR est utilisée. Dans ce contexte, nos travaux de thèse se résument comme suit : 1)Réalisation d'un kit de calibrage sur Wafer pour exécuter à la fois le calibrage LAR et le calibrage Multiline TRL qui constitue le calibrage de référence pour les mesures sur wafer. 2)Proposition d'une méthode originale basée sur un calcul d'erreur pour tenir compte du fait que les impédances d'entrée et de sortie de l'atténuateur étalon sont différentes de 50 Ω. Outre sa précision, l'avantage de cette méthode est qu'elle ne nécessite pas la détermination précise de l'impédance de référence du calibrage LAR. 3)Proposition d'une méthode originale analytique pour déterminer l'impédance d'entrée et de sortie de calibrage et donc l'impédance de référence. 4)Réalisation d'un kit de calibrage large bande pour les utilisateurs, dont l'impédance de référence du calibrage LAR est peut être obtenue par trois moyens :. ● Modélisation électrique de l'atténuateur. ● Modélisation de l'impédance de référence par interpolation polynomiale. ● Mise au point d'une méthode simplifiée : la procédure LAR-L. 5)Analyse des erreurs dans le cas ou le substrat du kit de calibrage est différent du substrat du dispositif à caractériser. Pour déterminer cette capacité, une solution consiste à graver sur le wafer du dispositif sous test une ligne de transmission dont les dimensions doivent être connues, et dont on mesure les paramètres S après calibrage du VNA.
4

Conception et développement d’étalons pour la mesure des paramètres S en mode mixte de circuits intégrés et méthodes associées / Design and development standards for mixed-mode S-parameters measurement of integrated circuits and associated methods

Pham, Thi Dao 12 September 2019 (has links)
Des circuits différentiels sont largement utilisés pour la conception de composants hyperfréquences principalement en raison de leur meilleure immunité au bruit. Ces circuits doivent être caractérisés au moyen de paramètres S en mode mixte (mode différentiel, mode commun et conversion entre les deux modes). De plus, la tendance à la miniaturisation et à l’intégration des dispositifs hyperfréquences conduit à l’utilisation de structures planaires ou coplanaires telles que les lignes micro-ruban ou les lignes coplanaires. La structure coplanaire avec les conducteurs déposés à la surface supérieure du substrat évite de réaliser des trous métallisés, et donc simplifie la fabrication et empêche l’apparition d’éléments parasites. Du point de vue de la métrologie électrique, il est nécessaire d’établir la traçabilité des mesures de paramètres S en mode mixte au Système International d’unités (SI). La méthode d’étalonnage Multimode Thru – Reflect – Line (TRL), dérivée de l’étalonnage TRL couramment utilisée pour les mesures de paramètres S de circuits asymétriques, est bien adaptée à cette problématique. En effet, l’impédance caractéristique, qui définit l’impédance de référence du système de mesure, peut être obtenue à partir des constantes de propagation déterminées lors de la procédure Multimode TRL et des capacités linéiques en DC.Nous présentons la première conception et la réalisation d’un kit d’étalonnage Multimode TRL et d’un kit de vérification à base des lignes coplanaires couplées en configuration « Ground – Signal – Ground – Signal – Ground » sur un substrat de quartz (SiO2) à faibles pertes diélectriques pour des mesures de paramètres S en mode mixte sur wafer de 1 GHz à 40 GHz. Les mesures sont effectuées à l’aide de deux méthodes : l’approche « one-tier » basée sur la procédure d’étalonnage Multimode TRL afin de déterminer et de corriger l’ensemble des erreurs systématiques ou bien l’approche « two-tier » qui fractionne la détermination et la correction des termes d’erreur en deux étapes dont la deuxième est associée à la méthode Multimode TRL. La faisabilité et la validation de ces techniques sont démontrées par des mesures d’éléments de vérification, constitués de lignes (adaptées, désadaptées et déséquilibrées) et d’atténuateurs en T, qui montrent un très bon accord entre les valeurs mesurées et simulées.La propagation des incertitudes est évaluée soit à partir du calcul des dérivées partielles à l’aide de l’outil Metas.Unclib ou bien par simulation numérique basée sur la méthode de Monte Carlo. La précision des mesures de paramètres S sous pointes dépend des sources d’influence attribuées aux mesures et aux imperfections des étalons telles que le bruit et la non-linéarité de l’analyseur de réseaux vectoriel, la stabilité des câbles, la répétabilité des mesures et la sensibilité dans la réalisation des étalons. Faute de temps, nous nous limitons à estimer la propagation d’incertitudes liées à la répétabilité de mesure des étalons et du dispositif sous test (DST) aux valeurs des paramètres S corrigés de la ligne désadaptée. Les résultats montrent que l’approche des dérivées partielles basée sur une approximation de la série de Taylor au premier ordre ne peut pas être utilisée avec précision à cause de l’influence significative de la non-linéarité des fonctions mathématiques de l’algorithme Multimode TRL. La méthode Monte Carlo s’avère alors plus précise bien qu’elle nécessite des temps de calcul très longs. / Differential circuits are widely used in the design of high frequency components mainly because of their better noise immunity. These circuits can be characterized using mixed-mode S parameters (differential- and common-mode S-parameters and cross-mode terms). Furthermore, the trend toward miniaturization and integration of microwave devices increases the need for planar or coplanar microwave integrated circuits such as micro-strip lines or coplanar waveguides. The ungrounded coplanar waveguide structure with all the conductors located on the same side of the substrate eliminates the need for via-holes, and thus simplifies manufacturing and prevents the appearance of some parasitic elements. From the viewpoint of electrical metrology, it is necessary to establish the traceability of the mixed-mode S-parameter measurements to the International System of Units (SI). The Multimode Thru-Reflect-Line (TRL) calibration method, derived from the commonly-used TRL calibration for S-parameter measurements of single-ended circuits, is particularly well suited for this purpose as the standards are traceable via dimensional measurements. The characteristic impedance, which defines the reference impedance of the measurement system, can be achieved from the propagation constants determined during the Multimode TRL calibration and the capacitances per unit length of the transmission line.We present the first design and realization of Multimode TRL calibration and verification kits using coupled coplanar lines in the "Ground - Signal - Ground - Signal - Ground" configuration on quartz (SiO2), the low-loss substrate, for on-wafer mixed-mode S-parameter measurements from 1 GHz to 40 GHz. Measurements are performed using two methods: the “one-tier” technique, based on the Multimode TRL calibration procedure, determines and corrects all systematic errors. The “two-tier” approach, in which the Multimode TRL is applied at the second-tier, is applied to measurement data that were partially corrected by the first calibration. The feasibility and the validation of the methods are demonstrated by measurements of matched, mismatched and unbalanced lines and T-attenuators showing good agreement between simulated and measured results.The propagation of uncertainty can be derived by the calculation of partial derivatives using the Metas.Unclib tool or by the numerical approach based on the Monte Carlo technique. The accuracy of on-wafer S-parameter measurements depends on sources of influence attributed to the measurements and to the imperfections of the standards such as the VNA noise and non-linearity, the cable stability, the measurement repeatability, and the sensitivity in calibration standards’ realization. We focus, first and foremost, on the propagation of uncertainties related to the repeatability of the standards and the device under test measurements to the corrected mixed-mode S-parameters of the mismatched line. The results show that the partial derivatives approach based on an approximation of the first-order Taylor series cannot be accurately used due to the significant influences of non-linear functions in the Multimode TRL algorithm. The Monte Carlo method is then more precise although it requires very long computation time.

Page generated in 0.0691 seconds