Spelling suggestions: "subject:"analytic sensitivities"" "subject:"analytic ensitivities""
1 |
Topology Optimization of Multifunctional Nanocomposite StructuresSeifert, David Ryan 29 November 2018 (has links)
This thesis presents the design of multifunctional structures through the optimal placement of nanomaterial additives. Varying the concentration of Carbon Nanotubes (CNTs) in a polymer matrix affects its local effective properties, including mechanical stiffness, electrical conductivity, and piezoresistivity. These local properties in turn drive global multifunctional performance objectives. A topology optimization algorithm determines the optimal distribution of CNTs within an epoxy matrix in an effort to design a set of structures that are capable of performing some combination of mechanical, electrical, or peizoresistive functions. A Pareto-Based Restart Method is introduced and may be used within a multi-start gradient based optimization to obtain well defined multiobjective Pareto Fronts. A linear design variable filter is used to limit the influence of checkerboarding. The algorithm is presented and applied to the design of beam cross-sections and 2D plane stress structures. It is shown that tailoring the location of even a small amount of CNT (as low as 2 percent and as high as 10 percent, by volume) can have significant impact on stiffness, electrical conductivity, and strain-sensing performance. Stiffness is maximized by placing high concentrations of CNT in locations that either maximize the bending rigidity or minimize stress concentrations. Electrical conductivity is maximized by the formation of highly conductive paths between electrodes. Strain-sensing is maximized via location of percolation volume fractions of CNTs in high strain areas, manipulation of the strain field to increase the strain magnitude in these areas, and by avoiding negative contributions of piezoresistivity from areas with differing net signed strains. It is shown that the location of the electrodes can affect sensing performance. A surrogate model for simultaneous optimization of electrode and topology is introduced and used to optimize a 2D plane stress structure. This results in a significant increase in sensing performance when compared to the fixed-electrode topology optimization. / Ph. D. / This dissertation presents a method that allows for the best placement of a limited amount of filler material within a base matrix material to form an optimal composite structure. Adding filler material, in this case Carbon Nanotubes, can change the effective behavior of the composite structure, enhancing the capabilities of the base matrix material by adding structural stiffness, electrical conductivity, and even the ability for the structure to measure its own strains. The degree to which these changes occur is dependent on the amount of filler material present in any given subsection of the structure. The method then is focused on determining how much of the filler to place in different subsections of the structure to maximize several measures of performance. These measures pertain to structural performance, electrical conductivity, and the structure’s ability to sense strains. Steps are taken within the method to remove non-physical designs and also to find the overall best design, called the global minima. The method is applied to several test structures of varying complexity, and it is shown that the optimization method can heavily influence performance by tailoring the filler material distribution. Further electrical and sensing performance gains can be obtained by properly selecting where the electrodes are located on the structure. This is demonstrated by including electrode placement in the design method along with the filler distribution.
|
Page generated in 0.0703 seconds