• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 14
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 14
  • 13
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated modelling of structure-foundation systems

Wotherspoon, Liam M. January 2009 (has links)
A problem endemic in the development of the built environment is poor communication between structural and geotechnical specialists. Through better communication and considering the structure and foundation as an integrated system, new opportunities may arise for achieving superior performance. This thesis investigates the seismic performance of the integrated system through the development of integrated structure-foundation models using the Ruaumoko structural analysis program. A detailed representation of the structural and foundation systems was created using Ruaumoko, providing insight into the response of a range of integrated structure-foundation systems during seismic loading. In developing both shallow and deep foundation models, some modifications were made to Ruaumoko elements in order to improve the foundation model, but generally existing element configurations were used to represent foundations. Multiple structural and foundation designs were developed using a range of approaches. Use of a range of shallow foundation design methods identified the significant impact that moment loading had on foundation performance. Partial uplift of footings was identified as detrimental to footing performance as it shifted the rotational axes, increasing moment loads and reducing effective footing area. Pinned connections between the structure and shallow footings eliminated these effects at the expense of significant redistribution of actions in the structure and increased displacements. Variation of soil conditions showed that softer soil was most likely to reduce demands on the structure at the expense of foundation non-linearity. Reduced stiffness and increased radiation damping characteristics of raft foundations compared to footing foundation systems reduced the demands on three storey structures for all soil conditions. Increased structural demands were identified for the ten storey structure as a result of the reduced impact of foundation characteristics on the response of the integrated system. The level of rotational restraint at the head of pile foundations had a considerable effect on the structure and the foundation, with free-head piles developing the largest pile displacements and actions. Reduced rotational stiffness caused a substantial change in the distribution of structural actions, while increasing rotational restraint moved the characteristics closer to the response of fixed base models. Softer soil conditions greatly increased non-linearity in the foundation soil without any definitive improvement in structural performance.
2

Integrated modelling of structure-foundation systems

Wotherspoon, Liam M. January 2009 (has links)
A problem endemic in the development of the built environment is poor communication between structural and geotechnical specialists. Through better communication and considering the structure and foundation as an integrated system, new opportunities may arise for achieving superior performance. This thesis investigates the seismic performance of the integrated system through the development of integrated structure-foundation models using the Ruaumoko structural analysis program. A detailed representation of the structural and foundation systems was created using Ruaumoko, providing insight into the response of a range of integrated structure-foundation systems during seismic loading. In developing both shallow and deep foundation models, some modifications were made to Ruaumoko elements in order to improve the foundation model, but generally existing element configurations were used to represent foundations. Multiple structural and foundation designs were developed using a range of approaches. Use of a range of shallow foundation design methods identified the significant impact that moment loading had on foundation performance. Partial uplift of footings was identified as detrimental to footing performance as it shifted the rotational axes, increasing moment loads and reducing effective footing area. Pinned connections between the structure and shallow footings eliminated these effects at the expense of significant redistribution of actions in the structure and increased displacements. Variation of soil conditions showed that softer soil was most likely to reduce demands on the structure at the expense of foundation non-linearity. Reduced stiffness and increased radiation damping characteristics of raft foundations compared to footing foundation systems reduced the demands on three storey structures for all soil conditions. Increased structural demands were identified for the ten storey structure as a result of the reduced impact of foundation characteristics on the response of the integrated system. The level of rotational restraint at the head of pile foundations had a considerable effect on the structure and the foundation, with free-head piles developing the largest pile displacements and actions. Reduced rotational stiffness caused a substantial change in the distribution of structural actions, while increasing rotational restraint moved the characteristics closer to the response of fixed base models. Softer soil conditions greatly increased non-linearity in the foundation soil without any definitive improvement in structural performance.
3

Integrated modelling of structure-foundation systems

Wotherspoon, Liam M. January 2009 (has links)
A problem endemic in the development of the built environment is poor communication between structural and geotechnical specialists. Through better communication and considering the structure and foundation as an integrated system, new opportunities may arise for achieving superior performance. This thesis investigates the seismic performance of the integrated system through the development of integrated structure-foundation models using the Ruaumoko structural analysis program. A detailed representation of the structural and foundation systems was created using Ruaumoko, providing insight into the response of a range of integrated structure-foundation systems during seismic loading. In developing both shallow and deep foundation models, some modifications were made to Ruaumoko elements in order to improve the foundation model, but generally existing element configurations were used to represent foundations. Multiple structural and foundation designs were developed using a range of approaches. Use of a range of shallow foundation design methods identified the significant impact that moment loading had on foundation performance. Partial uplift of footings was identified as detrimental to footing performance as it shifted the rotational axes, increasing moment loads and reducing effective footing area. Pinned connections between the structure and shallow footings eliminated these effects at the expense of significant redistribution of actions in the structure and increased displacements. Variation of soil conditions showed that softer soil was most likely to reduce demands on the structure at the expense of foundation non-linearity. Reduced stiffness and increased radiation damping characteristics of raft foundations compared to footing foundation systems reduced the demands on three storey structures for all soil conditions. Increased structural demands were identified for the ten storey structure as a result of the reduced impact of foundation characteristics on the response of the integrated system. The level of rotational restraint at the head of pile foundations had a considerable effect on the structure and the foundation, with free-head piles developing the largest pile displacements and actions. Reduced rotational stiffness caused a substantial change in the distribution of structural actions, while increasing rotational restraint moved the characteristics closer to the response of fixed base models. Softer soil conditions greatly increased non-linearity in the foundation soil without any definitive improvement in structural performance.
4

Integrated modelling of structure-foundation systems

Wotherspoon, Liam M. January 2009 (has links)
A problem endemic in the development of the built environment is poor communication between structural and geotechnical specialists. Through better communication and considering the structure and foundation as an integrated system, new opportunities may arise for achieving superior performance. This thesis investigates the seismic performance of the integrated system through the development of integrated structure-foundation models using the Ruaumoko structural analysis program. A detailed representation of the structural and foundation systems was created using Ruaumoko, providing insight into the response of a range of integrated structure-foundation systems during seismic loading. In developing both shallow and deep foundation models, some modifications were made to Ruaumoko elements in order to improve the foundation model, but generally existing element configurations were used to represent foundations. Multiple structural and foundation designs were developed using a range of approaches. Use of a range of shallow foundation design methods identified the significant impact that moment loading had on foundation performance. Partial uplift of footings was identified as detrimental to footing performance as it shifted the rotational axes, increasing moment loads and reducing effective footing area. Pinned connections between the structure and shallow footings eliminated these effects at the expense of significant redistribution of actions in the structure and increased displacements. Variation of soil conditions showed that softer soil was most likely to reduce demands on the structure at the expense of foundation non-linearity. Reduced stiffness and increased radiation damping characteristics of raft foundations compared to footing foundation systems reduced the demands on three storey structures for all soil conditions. Increased structural demands were identified for the ten storey structure as a result of the reduced impact of foundation characteristics on the response of the integrated system. The level of rotational restraint at the head of pile foundations had a considerable effect on the structure and the foundation, with free-head piles developing the largest pile displacements and actions. Reduced rotational stiffness caused a substantial change in the distribution of structural actions, while increasing rotational restraint moved the characteristics closer to the response of fixed base models. Softer soil conditions greatly increased non-linearity in the foundation soil without any definitive improvement in structural performance.
5

A computational tool for seismic collapse assessment of masonry structures

Mehrotra, Anjali Abhay January 2019 (has links)
Earthquakes represent a serious threat to the safety of masonry structures, with failure of these constructions under the influence of seismic action generally occurring via specific, well-documented collapse mechanisms. Analysis and assessment of these collapse mechanisms remains a challenge - while most analysis tools are time-consuming and computationally expensive, typical assessment methods are too simplified and often tend to underestimate the dynamic resistance of the structures. This dissertation aims to bridge the gap between the two through the development of a computational tool for the seismic collapse assessment of masonry structures, which uses rocking dynamics to accurately capture large displacement response, without compromising on computational efficiency. The tool could be used for rapid evaluation of critical mechanisms in a structure in order to prioritise retrofit solutions, as well as for code-based seismic assessment. The framework of the tool is first presented, wherein the rocking equations of motion are derived for a range of different collapse mechanisms, for any user-defined structural geometry, using as a starting point a geometric model of the structure in Rhino (a 3D CAD software). These equations of motion are then exported for solution to MATLAB. As a number of collapse mechanisms take place above ground level, a methodology to account for ground motion amplification effects is also proposed, while in the case of comparison of multiple different mechanisms, an algorithm to automatically detect critical mechanisms is presented. These developments make it possible to rapidly conduct a seismic analysis of structures with complicated three-dimensional geometries. However, the rocking equations of motion utilised thus far assume that the interfaces between the masonry macro-elements are rigid, which is not the case in reality. Thus, a flexible interface model is introduced, where the interfaces are characterised by a finite stiffness and compressive strength. This modelling strategy results in an inward shift of the rocking rotation points, and expressions are derived for these shifting rotation points for different interface geometries. The rocking equations of motion are also re-derived to account for the influence of the continuously moving hinges. However, the new equations tend to be highly non-linear - especially in the case of more complex collapse mechanisms. Thus to reduce computational burden, the semi-flexible interface model is proposed, which accounts for the shifting hinges in a more simplified manner than its fully-flexible counterpart. These new analytical models enable more accurate prediction of the seismic response of real-world structures, where interface flexibility tends to have a significant influence on dynamic response, while material damage in the form of crushing of the masonry also reduces dynamic resistance. The ability of the tool to be used for both seismic analysis and assessment is finally demonstrated by using it to perform a rocking dynamics-based analysis as well as a code-based seismic assessment of the walls of a historic earthen structure.
6

Single-lap shear bond tests on Steel Reinforced Geopolymeric Matrix-concrete joints

Bencardino, F., Condello, A., Ashour, Ashraf F. 08 November 2016 (has links)
Yes / Nowadays Fiber Reinforced Polymers (FRPs) represent a well-established technique for rehabilitation of Reinforced Concrete (RC) and masonry structures. However, the severe degradation of mechanical properties of FRP under high temperature and fire as well as poor sustainability represents major weak points of organic-based systems. The use of eco-friendly inorganic geopolymeric matrices, alternative to the polymeric resins, would be highly desirable to overcome these issues. The present work aims to investigate the bond characteristic of a novel Steel Reinforced Geopolymeric Matrix (SRGM) strengthening system externally bonded to a concrete substrate having low mechanical properties. SRGM composite material consists of stainless steel cords embedded into a fireproof geopolymeric matrix. Single-lap shear tests by varying the bonded length were carried out. The main failure mode observed of SRGM-concrete joints was debonding at the fiber-matrix interface. Test results also suggest the effective bond length. On the basis of the experimental results, a cohesive bond-slip law was proposed. / Part of the analyses were developed within the activities of Rete dei Laboratori Universitari di Ingegneria Sismica (ReLUIS) for the research program funded by the Dipartimento di Protezione Civile (DPC), Progetto DPC/ReLUIS 2016–AQ DPC/ReLUIS 2014–2016.
7

STRUCTURAL BEHAVIOUR OF PLASTERED STRAW BALE ASSEMBLIES UNDER CONCENTRIC AND ECCENTRIC LOADING

Vardy, STEPHEN 29 May 2009 (has links)
The use of plastered straw bale walls in residential construction is growing as builders and owners seek environmentally friendly alternatives to typical timber construction practices. Straw has excellent insulation properties and is an agricultural bi-product which is annually renewable, and is often considered a waste product of grain production. This thesis presents new models for predicting the compressive strength of plastered straw bale assemblies subjected to concentric and eccentric load. A constitutive model for lime-cement plaster is adapted from a stress-strain model for concrete, available in the literature. Twenty-two cylinder tests on plasters typically used for straw bale construction were used to verify the constitutive model. The models for plastered straw bale assemblies were verified by testing plastered straw bale assemblies under concentric and eccentric compressive loads. An innovative steel frame test jig was designed to facilitate fabrication and testing of the specimens. Using this jig, 18 specimens of height 0.33 m, 0.99 m, 1.05 m or 2.31 m were subjected to concentric or eccentric compressive load until failure. The experimental strengths of the assemblies ranged from 23 kN/m to 61 kN/m, depending on the eccentricity of the load, the plaster strength, and the plaster thickness. Results indicated that the specimen height did not significantly influence the strengths of the specimens. The models predicted the ultimate strength of the assemblies to be, on average, 6% less than the experimentally determined strengths, with a standard deviation of 13%. The models were also used to predict the theoretical ultimate strengths for a number of plastered straw bale wall assemblies described in the literature. The fabrication techniques for these specimens were more representative of conventional straw bale construction techniques, and it was found that the experimental results were 30% of the theoretical strengths for assemblies with plaster strength less than 10 MPa and 6% of the theoretical strengths for assemblies with plaster strength greater than 10 MPa. Thus, to account for construction imperfections and potential alternative failure mechanisms, a reduction factor of no more than 0.3 for plaster less than 10 MPa is suggested in order to predict the strength of plastered straw bale walls constructed using conventional construction techniques. The results presented herein provide support for the use of plastered straw bale walls in residential construction and indicate the applicability of models based on the compressive behaviour of lime-cement plaster for modelling the behaviour of plastered straw bale walls under eccentric and concentric compression. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2009-05-29 13:34:53.867
8

Modelling of Liquid Breakup Mechanisms in Engineering Systems

Diemuodeke, Ogheneruona Endurance 09 1900 (has links)
Effective design of liquid fuel injection systems is a function of good understanding of liquid breakup mechanisms. A transient liquid breakup model is developed on the classical interfacial breakup theory by modifying the classical linear perturbation process to include time-dependent base and perturbed flow parameters. The non-isothermal condition on liquid jet instability and breakup is theoretically modelled; with the particular consideration of a spatially variation of surface tension along the liquid-gas interface. The model combines the classical interface hydrodynamic instability and breakup theory and heat-transfer through semi-infinite medium. Analytical liquid breakup model, which combines transient and non-isothermal effects on liquid jet breakup, is suggested. The suggested model could be simplified to the transient breakup model and the non-isothermal breakup model equivalents. A novel mechanistic model, which is based on a simple momentum balance between the injected jet and the aerodynamic drag force, is suggested for breakup length. A new model, which combines energy criterion and dual-timescale for turbulent shear in droplet dispersion, is suggested for droplet breakup criteria on the basis of critical Webber number. All developed models showed good predictions of available experimental data, and established empirical correlation, within the operational conditions of contemporary ICEs, specifically diesel engines. Continued research in these areas could benefit the development of the next generation of liquid fuel injectors and combustors – by accounting for transient effects and non-isothermal conditions in liquid jet breakup, and turbulent shear in droplet breakup.
9

Effects of rear bumper beam deletion on the perception of steering performance of commercial vehicles

Banks, Alan James January 2015 (has links)
In order to remain competitive in the marketplace, all motor vehicle manufacturers face difficult decisions with regard to balancing cost vs. feature. That is to say that the manufacturer must balance the cost of the product to the customer to remain competitive whilst offering appropriate technology and standard features required by that customer. All motor manufacturers are therefore under pressure to keep costs of nonfeature items to a minimum. One of the cost reductions items prevalent on most vehicles is the deletion of the structural member that attaches the rear bumper, known as the bumper beam (RBB), which is researched in this Thesis. This generates average vehicle savings of $20 and, as this is invisible to the customer, should enable the manufacturers to realise a significant saving or allow this revenue to be spent on additional feature without loss of vehicle function. However, in nearly all cases, deletion of the rear bumper beam has the effect of degrading the steering responses of the vehicle by 1 to 1½ rating points (out of 10), which is contrary to the premise of cost reductions; which is to ensure that vehicle function is unaffected. Initial analysis of vehicles with deleted rear bumper beams cannot show an objective measurable difference in any vehicle behaviours with or without the beam fitted, and hence CAE studies using ADAMS models cannot verify the effects of the bumper beam. It was necessary to employ unconventional modelling and testing methods such as rigid body, flexible body model techniques as well as experimental studies included driving robots and expert driver appraisals. The research demonstrated that vehicle modelling methods currently used, cannot establish or predict the complete vehicle ride and handling status. A total vehicle model approach should be used without separating the body CAE model and vehicle dynamics ADAMS model into separate entities. Furthermore, it was concluded that the determination to the effects of body hysteresis rather than pure stiffness is of crucial importance and that the steering attribute could be maintained with the deletion of the RBB analytically.
10

Modelling of liquid breakup mechanisms in engineering systems

Diemuodeke, Ogheneruona Endurance January 2014 (has links)
Effective design of liquid fuel injection systems is a function of good understanding of liquid breakup mechanisms. A transient liquid breakup model is developed on the classical interfacial breakup theory by modifying the classical linear perturbation process to include time-dependent base and perturbed flow parameters. The non-isothermal condition on liquid jet instability and breakup is theoretically modelled; with the particular consideration of a spatially variation of surface tension along the liquid-gas interface. The model combines the classical interface hydrodynamic instability and breakup theory and heat-transfer through semi-infinite medium. Analytical liquid breakup model, which combines transient and non-isothermal effects on liquid jet breakup, is suggested. The suggested model could be simplified to the transient breakup model and the non-isothermal breakup model equivalents. A novel mechanistic model, which is based on a simple momentum balance between the injected jet and the aerodynamic drag force, is suggested for breakup length. A new model, which combines energy criterion and dual-timescale for turbulent shear in droplet dispersion, is suggested for droplet breakup criteria on the basis of critical Webber number. All developed models showed good predictions of available experimental data, and established empirical correlation, within the operational conditions of contemporary ICEs, specifically diesel engines. Continued research in these areas could benefit the development of the next generation of liquid fuel injectors and combustors – by accounting for transient effects and non-isothermal conditions in liquid jet breakup, and turbulent shear in droplet breakup.

Page generated in 0.2221 seconds