• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 14
  • 2
  • 1
  • Tagged with
  • 44
  • 44
  • 14
  • 13
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modelling priority queuing systems with varying service capacity

Chen, M., Jin, X.L., Wang, Y.Z., Cheng, X.Q., Min, Geyong January 2013 (has links)
No / Many studies have been conducted to investigate the performance of priority queuing (PQ) systems with constant service capacity. However, due to the time-varying nature of wireless channels in wireless communication networks, the service capacity of queuing systemsmay vary over time. Therefore, it is necessary to investigate the performance of PQ systems in the presence of varying service capacity. In addition, self-similar traffic has been discovered to be a ubiquitous phenomenon in various communication networks, which poses great challenges to performance modelling of scheduling systems due to its fractal-like nature. Therefore, this paper develops a flow-decomposition based approach to performance modelling of PQ systems subject to self-similar traffic and varying service capacity. It specifically proposes an analytical model to investigate queue length distributions of individual traffic flows. The validity and accuracy of the model is demonstrated via extensive simulation experiments.
22

Performance Analysis of Hybrid Wireless Networks Under Bursty and Correlated Traffic

Wu, Y., Min, Geyong, Yang, L.T. January 2013 (has links)
No / Wireless local area networks (WLANs) have risen in popularity for in-car networking systems that are designed to make driving safer. Wireless mesh networks (WMNs) are widely deployed to expand the coverage of high-speed WLANs and to support last-mile connectivity for mobile users anytime and anywhere at low cost. Many recent measurement studies have shown that the traffic arrival process in wireless networks exhibits the bursty and correlated nature. A new analytical model is developed in this paper as a cost-effective performance tool to investigate the quality-of-service (QoS) of the WMN that interconnects multiple WLANs in the presence of bursty and correlated traffic. After validating its accuracy via extensive simulation experiments, the analytical model is then used to investigate the performance of the hybrid wireless networks.
23

Performance modelling and evaluation of heterogeneous wired/wireless networks under bursty traffic : analytical models for performance analysis of communication networks in multi-computer systems, multi-cluster systems, and integrated wireless systems

Yulei, W. U. January 2010 (has links)
Computer networks can be classified into two broad categories: wired networks and wireless networks, according to the hardware and software technologies used to interconnect the individual devices. Wired interconnection networks are hardware fabrics supporting communications between individual processors in highperformance computing systems (e.g., multi-computer systems and cluster systems). On the other hand, due to the rapid development of wireless technologies, wireless networks have emerged and become an indispensable part for people's lives. The integration of different wireless technologies is an effective approach to accommodate the increasing demand of the users to communicate with each other and access the Internet. This thesis aims to investigate the performance of wired interconnection networks and integrated wireless networks under the realistic working conditions. Traffic patterns have a significant impact on network performance. A number of recent measurement studies have convincingly demonstrated that the traffic generated by many real-world applications in communication networks exhibits bursty arrival nature and the message destinations are non-uniformly distributed. Analytical models for the performance evaluation of wired interconnection networks and integrated wireless networks have been widely reported. However, most of these models are developed under the simplified assumption of non-bursty Poisson process with uniformly distributed message destinations. To fill this gap, this thesis first presents an analytical model to investigate the performance of wired interconnection networks in multi-computer systems. Secondly, the analytical models for wired interconnection networks in multi-cluster systems are developed. Finally, this thesis proposes analytical models to evaluate the end-to-end delay and throughput of integrated wireless local area networks and wireless mesh networks. These models are derived when the networks are subject to bursty traffic with non-uniformly distributed message destinations which can capture the burstiness of real-world network traffic in the both temporal domain and spatial domain. Extensive simulation experiments are conducted to validate the accuracy of the analytical models. The models are then used as practical and cost-effective tools to investigate the performance of heterogeneous wired or wireless networks under the traffic patterns exhibited by real-world applications.
24

Modélisation de composants d'extraction de la chaleur : application à l'optimisation de système d'électronique de puissance / Modelling of heat transfer components : Application to optimization of power electronics systems

Castelan, Anne 22 December 2017 (has links)
Avec le remplacement des réseaux hydrauliques et pneumatiques à bord des aéronefs par des réseaux électriques, le nombre d'équipements embarqués pour assurer un bon fonctionnement augmentera. Le passage à un avion entièrement électrique permettrait de réduire les couts de production et fonctionnement, assurerait une meilleure fiabilité des systèmes, et réduirait l'impact écologique de la circulation d'un tel appareil. En effet, un tel avion serait plus léger qu'un avion actuel. Pour s'assurer de cela, il est nécessaire de réduire la masse des équipements embarqués servant à la gestion, la mise en forme, la distribution d'énergie électrique. Le dimensionnement et l'optimisation de la masse des équipements embarqués est donc une problématique fondamentale dans le développement de l'avion plus électrique. Cette masse est majoritairement fixée par les systèmes de refroidissement lorsque l'on considère des systèmes de conversion d'énergie. Parmi l'ensemble des systèmes de refroidissement disponibles et dédiés au refroidissement des convertisseurs statiques, deux grandes technologies ont été sélectionnées, dans l'objectif d'en produire des modèles dédiés à des routines d'optimisation. Les dissipateurs à ailettes droites en convection forcée, ainsi que les systèmes associant dissipateurs à ailettes et caloducs seront modélisés au cours de ces travaux de thèse. Des modèles analytiques de ces systèmes de refroidissement seront proposés, dans l'optique de pouvoir optimiser au mieux leur masse tout en assurant un bon fonctionnement thermique. Même si de nombreuses méthodes de dimensionnement et d'optimisation dédiées aux systèmes de refroidissement existent, notre choix de modélisation s'est porté sur une représentation analytique. En effet, ce type de modélisation est déduit d'une résolution exacte de l'équation de la chaleur pour représenter des configurations géométriques et thermiques simples. Les configurations sélectionnées correspondent à des configurations simples à modéliser analytiquement. L'avantage de tels modèles réside dans le fait que le comportement thermique de systèmes de refroidissement, i.e de la température de la source de chaleur à l'ambiant, est une fonction des paramètres géométriques, des matériaux et des conditions environnementales des systèmes de refroidissement. Ce sont donc des modèles très rapides d'exécution qui donnent une solution exacte du comportement thermique des dissipateurs modélisés. Ils présentent donc un réel intérêt dans l'optique d'optimiser la masse de ces systèmes. / The replacement of hydraulic and pneumatic network embedded in aircraft by electrical network will increase the number of embedded systems to ensure the effective functioning of the aircraft. The development of an electrical aircraft will allow the reduction of production and functioning costs. It will also help ensure a better reliability of systems and will reduce the ecological impact of the aircraft circulation. This kind of plane would be lighter than a usual one. To be sure of this, it is necessary to reduce weight of embedded equipment's dedicated to management, conversion and distribution of electrical energy. The sizing and the optimization of embedded equipment's weight is a critical issue in the development of more electrical aircraft. This weight is mostly defined by heat transfer systems, when we consider the sizing of energy conversion system A lot of heat transfer system exists and are dedicated to the cooling of power converters. We selected two of these heat transfer system, in order to produce models of them. These models will be used in optimization routines. Plate fin heat sink in forced convection, and system assembly, combining heat pipe and plate fin heat sink, will be modelled during this thesis. Analytical models of these heat transfer systems will be developed, to optimize their weight and ensure a good cooling of electrical systems. Even if lots of dimensioning and optimization methods exists, dedicated to heat transfer systems, we choose to use analytical modelling. This kind of models gives an exact solution to the heat equation, to describe simple geometric and thermic configurations. Selected heat transfer systems can be simply described. The main advantage of these models is that it represents the thermal behavior of the system as a function of its geometrical parameters, materials and environmental conditions. Execution of these models is very fast and gives a precise solution of the thermal parameters of the described configuration. There is then a real interest to use this type of models to optimize weight of heat transfer systems, and then power converter.
25

Développement de modèles analytiques pour la prédiction du comportement élastique des assemblages mécaniques à broches dans la construction en bois

Ly, Dong Phuong Lam 13 September 2006 (has links)
A general procedure for the evaluation of the mechanical properties of structural joints, named component method, is now available from intensive research works at the European level. This procedure allows the analytical prediction of the resistance, but also of the stiffness and the deformation capacity, of structural joints under external forces (axial or shear forces, bending moments ). The component method is nowadays integrated as a reference procedure in two European design codes, respectively for steel structures (EC3 [EN1993]) and steel-concrete composite structures (EC4 [EN1994]). However, its potential scope is much larger and present studies are aimed to apply to situations as joints in fire, joints under seismic loading, joints under exceptional loads (Robustness Project) . More recently, a research project [CTI-2004] has succeeded in applying the component method to the investigation of the elastic behaviour of mechanical joints in timber construction. That is the result of the collaboration of CTIB-TCHN (Belgian Institute for Wood Technology) and University of Liège. The main principle of the component method is the following: identification of constitutive components subjected to tension, compression or shear in the joint; determination of the mechanical behaviour of these individual components; "assembling" components so as to derive the mechanical properties of the whole joint. In the present paper, timber joints with dowel fasteners are considered. Two components may be identified: "dowel" component (dowel fastener in bending and shear); embedding component (timber member in embedding). The "dowel" component is known from past researches, whereas little information is available for the embedding component. EC5 [EN1995] proposes formulation to predict the behaviour for joints composed of these two components; but it only depends on two factors: the dowel diameter and the timber density. The influence probably significant of the grain direction (material strongly anisotropy) and the thickness of the connected members are for instance neglected. Experimental, numerical and analytical investigations have recently been performed by University of Liège in collaboration with CTIB-TCHN so as to propose another formulation more precise for joints. Experimental results, performed by CTIB-TCHN, have been used as reference for the development of numerical model and, then, analytical model. The application of the component method to the prediction of the elastic behaviour of timber joints consist of two steps: "local" investigation on components that is to develop analytical models for the prediction of the elastic behaviour of components; "global" investigation on joints that is to develop analytical models for the prediction of the elastic behaviour of joints. The application of the component method to timber joints with dowel fasteners is a first step towards the use of this concept in future to others mechanical joints (screw, punched metal plate, nail, bolt ). In this case, others components may be derived to cover the field of application expected.
26

Quantifying Isothermal Solidification Kinetics during Transient Liquid Phase Bonding using Differential Scanning Calorimetry

Kuntz, Michael January 2006 (has links)
The problem of inaccurate measurement techniques for quantifying isothermal solidification kinetics during transient liquid phase (TLP) bonding in binary and ternary systems; and resulting uncertainty in the accuracy of analytical and numerical models has been addressed by the development of a new technique using differential scanning calorimetry (DSC). This has enabled characterization of the process kinetics in binary and ternary solid/liquid diffusion couples resulting in advancement of the fundamental theoretical understanding of the mechanics of isothermal solidification. The progress of isothermal solidification was determined by measuring the fraction of liquid remaining after an isothermal hold period of varying length. A 'TLP half sample', or a solid/liquid diffusion couple was setup in the sample crucible of a DSC enabling measurement of the heat flow relative to a reference crucible containing a mass of base metal. A comparison of the endotherm from melting of an interlayer with the exotherm from solidification of the residual liquid gives the fraction of liquid remaining. The Ag-Cu and Ag-Au-Cu systems were employed in this study. Metallurgical techniques were used to compliment the DSC results. The effects of sample geometry on the DSC trace have been characterized. The initial interlayer composition, the heating rate, the reference crucible contents, and the base metal coating must be considered in development of the experimental parameters. Furthermore, the effects of heat conduction into the base metal, baseline shift across the initial melting endotherm, and the exclusion of primary solidification upon cooling combine to systematically reduce the measured fraction of liquid remaining. These effects have been quantified using a modified temperature program, and corrected using a universal factor. A comparison of the experimental results with the predictions of various analytical solutions for isothermal solidification reveals that the moving interface solution can accurately predict the interface kinetics given accurate diffusion data. The DSC method has been used to quantify the process kinetics of isothermal solidification in a ternary alloy system, with results compared to a finite difference model for interface motion. The DSC results show a linear relationship between the interface position and the square root of the isothermal hold time. While the numerical simulations do not agree well with the experimental interface kinetics due to a lack of accurate thermodynamic data, the model does help develop an understanding of the isothermal solidification mechanics. Compositional shift at the solid/liquid interface has been measured experimentally and compared with predictions. The results show that the direction of tie-line shift can be predicted using numerical techniques. Furthermore, tie-line shift has been observed in the DSC results. This study has shown that DSC is an accurate and valuable tool in the development of parameters for processes employing isothermal solidification, such as TLP bonding.
27

Quantifying Isothermal Solidification Kinetics during Transient Liquid Phase Bonding using Differential Scanning Calorimetry

Kuntz, Michael January 2006 (has links)
The problem of inaccurate measurement techniques for quantifying isothermal solidification kinetics during transient liquid phase (TLP) bonding in binary and ternary systems; and resulting uncertainty in the accuracy of analytical and numerical models has been addressed by the development of a new technique using differential scanning calorimetry (DSC). This has enabled characterization of the process kinetics in binary and ternary solid/liquid diffusion couples resulting in advancement of the fundamental theoretical understanding of the mechanics of isothermal solidification. The progress of isothermal solidification was determined by measuring the fraction of liquid remaining after an isothermal hold period of varying length. A 'TLP half sample', or a solid/liquid diffusion couple was setup in the sample crucible of a DSC enabling measurement of the heat flow relative to a reference crucible containing a mass of base metal. A comparison of the endotherm from melting of an interlayer with the exotherm from solidification of the residual liquid gives the fraction of liquid remaining. The Ag-Cu and Ag-Au-Cu systems were employed in this study. Metallurgical techniques were used to compliment the DSC results. The effects of sample geometry on the DSC trace have been characterized. The initial interlayer composition, the heating rate, the reference crucible contents, and the base metal coating must be considered in development of the experimental parameters. Furthermore, the effects of heat conduction into the base metal, baseline shift across the initial melting endotherm, and the exclusion of primary solidification upon cooling combine to systematically reduce the measured fraction of liquid remaining. These effects have been quantified using a modified temperature program, and corrected using a universal factor. A comparison of the experimental results with the predictions of various analytical solutions for isothermal solidification reveals that the moving interface solution can accurately predict the interface kinetics given accurate diffusion data. The DSC method has been used to quantify the process kinetics of isothermal solidification in a ternary alloy system, with results compared to a finite difference model for interface motion. The DSC results show a linear relationship between the interface position and the square root of the isothermal hold time. While the numerical simulations do not agree well with the experimental interface kinetics due to a lack of accurate thermodynamic data, the model does help develop an understanding of the isothermal solidification mechanics. Compositional shift at the solid/liquid interface has been measured experimentally and compared with predictions. The results show that the direction of tie-line shift can be predicted using numerical techniques. Furthermore, tie-line shift has been observed in the DSC results. This study has shown that DSC is an accurate and valuable tool in the development of parameters for processes employing isothermal solidification, such as TLP bonding.
28

An analysis of unconfined ground water flow characteristics near a seepage-face boundary

Simpson, Matthew January 2003 (has links)
A quantitative understanding of ground water flow characteristics in unconfined aquifers is important because of the prevalence of abstraction from, and pollution of these systems. The current understanding of ground water flow in unconfined aquifers is limited because of the dominance of horizontal flow modelling strategies used to represent unconfined flow processes. The application of horizontal flow principles leads to an ignorance of seepage-face formation and can not predict the complicated three-dimensional nature of the ground water flow that dominates at the ground water-surface water interface. This study aims to address some of these deficiencies by exploring the true three-dimensional nature of ground water flow including the formation of seepage faces at the ground water-surface water interface using numerical and laboratory techniques. A finite element model for simulating two-dimensional (vertical) variably saturated flow is developed and benchmarked against standard laboratory and field-scale solutions. The numerical features of the finite element model are explored and compared to a simple finite difference formulation. The comparison demonstrates how finite element formulations lead to a broader spatial averaging of material properties and a different method for the representation of specified flux boundaries. A detailed comparison analysis indicates that these differences in the finite element solution lead to an improved approximation to the partial differential equation governing two-dimensional (vertical) variably saturated flow. A laboratory analysis of unconfined ground water flow and associated solute transport characteristics was performed. The analysis focused upon unconfined flow towards a pumping well. The laboratory observations were reliably reproduced using a three-dimensional (axi-symmetric), variably saturated ground water flow model. The model was benchmarked against the ground water flow characteristics such as the seepage-face height and total flow rate. In addition, the model was shown to reliably reproduce the solute transport features such as travel times and streamline distributions. This is the first time that a numerical model has been used to reliably reproduce the solute transport characteristics near a seepage-face boundary where the three-dimensional flow effects are prevalent. The ability to reliably predict solute transport patterns in the seepage-face zone is important since this region is known to support vital microbially facilitated reactions that control nutrient cycling and contaminant attenuation. The three-dimensional travel time distribution near the seepage-face was compared to that predicted using a horizontal flow modelling approach derived from the basic Dupuit-Forchheimer equations. The Dupuit-Forchheimer based model indicated that horizontal flow modelling would under-estimate the total residence time near a seepage-face boundary, thereby introducing a considerable source of error in a solute transport analysis. For this analysis, a new analytical solution for the steady travel time distribution in an unconfined aquifer subject to a single pumping well was derived. The analytical model has identified, for the first time in the hydrogeology literature, the use of the imaginary error function. The imaginary error function is a standard transcendental function and an infinite series approach to evaluate the function was successfully proposed. The two-dimensional (vertical) ground water flow model was extended to handle the case where the flow is driven by density gradients near the ground water-surface water interface. The unsteady, two-dimensional, Galerkin finite element model of density-dependent ground water flow in variably saturated porous media is rigorously presented and partially benchmarked under fully saturated (confined) conditions. The partial benchmarking involved reproducing solutions to the standard Henry salt-water intrusion and the Elder salt-convection problems. The model was used in a standard density-coupled and a new density-uncoupled mode to elucidate the worthiness of the Henry and Elder problems as benchmark standards. A comparison of the coupled and uncoupled solutions indicates that the Henry salt-water intrusion problem has limited worthiness as a benchmark as the patterns of ground water flow are relatively insensitive to density-coupled effects. Alternatively, the Elder problem is completely dependent upon a correct representation of the density-coupled flow and solute transport processes. The coupled versus uncoupled comparison is proposed as a new test of the worthiness of benchmark standards. The Henry salt-water intrusion problem was further analysed in an attempt to alleviate some of the difficulties associated with this benchmark problem. The numerical model was tested against a re-evaluated version of Henry's semi-analytical solution for the coupled solute concentration distribution. The numerical model was used to propose a modified version of the Henry problem where the importance of density-coupled processes was increased. The modified problem was shown to have an improved worthiness as compared to the standard solution. The numerical model results were benchmarked against a new set of semi-analytical results for the modified problem. Certain advantages in using the modified problem as a test case for benchmarking the results of a numerical model of density-dependent ground water flow are identified. A numerical investigation of the patterns of density-driven ground water flow at the ground water-surface water interface was undertaken. The numerical model is shown to produce grid-independent results for a finely discretised domain. The pattern of discharge is controlled, in part, by two parameters. One describes the recharge applied to the aquifer, and the second describes the magnitude of the density differences between the fresh recharging fluid and the saline receiving fluid. The influence of dense intrusions upon the formation of seepage-face boundaries at the ground water-surface water interface under steady-state conditions was also investigated. Dense intrusions are shown to dominate the pattern of ground water flow only under mild recharge conditions, while seepage faces dominate the outflow pattern under strong recharge conditions. Therefore, the formation of seepage-face boundaries and dense intrusions are unlikely to coincide under the conditions examined in this study.
29

Génération de modeles compacts thermiques dynamiques de composants electroniques via les algorithmes genetiques / Generation of dynamic compact thermal models of packages using genetic algorithms

Dia, Cheikh Tidiane 11 December 2015 (has links)
La simulation détaillée au niveau carte de ces nouveaux types de packages est quasiment impossible du fait de la limitation des moyens de calculs actuels. En outre, dans la plupart des cas de conception électronique, seule l’estimation des températures en quelques points est intéressante. Une étude détaillée au niveau composant n’est pas nécessairement pertinente. Il faut donc un compromis entre faisabilité et/ou rapidité des calculs et une précision sur les paramètres importants. Une alternative est de trouver des modèles comportementaux équivalents aux modèles détaillés, capable de reproduire son comportement thermique aux points cruciaux. C’est dans cette optique que le projet européen DELPHI (Development of libraries of physical models of electronic components for an integrated design environment) a été initié en 1993. L’objectif de ce projet était de pouvoir générer un modèle compact à partir d’un modèle détaillé d’un composant électronique. Celui-ci a ainsi abouti à une standardisation du processus de génération des modèles mis en oeuvre. Néanmoins, les avancées issues de ce projet sont limitées aux composants mono-puces et à leur comportement thermique en régime permanent. L’objectif de cette thèse est d’avoir une approche multi-échelle de la génération de modèles compacts et leur interaction avec la carte. La modélisation multi-échelle consiste à la génération de modèles mono-puces ou multi-puces et leur réutilisation éventuelle dans des systèmes plus complexes tels que le PCB ou les « System-In-packages ». / This thesis is dedicated to the generation of behavioral thermal model for electronic component having multiple active sensitive chips. This innovative study focuses on the necessary improvements of the concept of steady-state and dynamic compact model in order to elaborate pertinent and accurate modeling practical techniques. To help the electronic designer to early identify the overheated electronic components, the purpose is to generate simplified models, capable to mimic the thermal behavior of sophisticated detailed models. These simplified or compact models using well-known thermal resistances network replicate the thermal path from the most sensitive elements to the external package surfaces and enable to accurately predict their temperatures as well as the case heat flow rates. Preliminary evaluations performed on the popular, plastic Quad Flat-pack No lead package family showed that the simplest network definition, restricted to the heating source and two external surfaces, is always insufficient to properly characterize the thermal response of real device. So our development of steady-state compact thermal model (CTM) for electronic component is based on a process flow defined by the European project DELPHI which was revised by the presented work to address multi-chip components. DELPHI style compact thermal model presents an enlarged node number, especially for the component external surfaces which are divided in a set of relevant areas.
30

Retrofitting of mechanically degraded concrete structures using fibre reinforced polymer composites

Tann, David Bohua January 2001 (has links)
This research involves the study of the short term loaded behaviour of mechanically degraded reinforced concrete (RC) flexural elements, which are strengthened with fibre reinforced polymer (FRP) composites. The two main objectives have been: (a) to conduct a series of realistic tests, the results of which would be used to establish the design criteria, and (b) to carry out analytical modelling and hence develop a set of suitable design equations. It is expected that this work will contribute towards the establishment of definitive design guidelines for the strengthening of reinforced concrete structures using advanced fibre composites. The experimental study concentrated on the laboratory testing of 30 simply supported, and 4 two-span continuous full size RC beams, which were strengthened by either FRP plates or fabric sheets. The failure modes of these beams, at ultimate limit state, were examined and the influencing factors were identified. A premature and extremely brittle collapse mechanism was found to be the predominant type of failure for beams strengthened with a large area of FRP composites. A modified semi-empirical approach was presented for predicting the failure load of such over strengthened beams. Despite the lack of ductility in fibre composites, it was found that the FRP strengthened members would exhibit acceptable ductile characteristics, if they were designed to be under strengthened. A new design-based methodology for quantifying the deformability of FRP strengthened elements was proposed, and its difference to the conventional concept of ductility was discussed. The available techniques for ductility evaluation of FRP strengthened concrete members were reviewed and a suitable method was recommended for determining ductility level of FRP strengthened members. A non-linear material based analytical model was developed to simulate the flexural behaviour of the strengthened and control beams, the results were seen to match very well. The parametric study provided an insight into the effects of various factors including the mechanical properties and cross sectional area of FRP composites, on the failure modes and ductility characteristics of the strengthened beams. Based on the findings of the experimental and analytical studies, design equations in the BS 8110 format were developed, and design case studies have been carried out. It was concluded that fibre composites could effectively and safely strengthen mechanically degraded reinforced concrete structures if appropriately designed. The modes of failure and the degree of performance enhancement of FRP strengthened beams depend largely on the composite material properties as well as the original strength and stiffness of the RC structure. If the FRP strengthened elements were designed to be under-strengthened, then the premature and brittle failure mode could be prevented and ductile failure mode could be achieved. It was also found that existing steel reinforcement would always yield before the FRP composite reached the ultimate strength. Furthermore, a critical reinforcement ratio, above which FRP strengthening should not be carried out, was defined. It was concluded that FRP strengthening is most suitable for reinforced concrete floor slabs, bridge decks, flanged beams and other relatively lightly reinforced elements. The study also revealed that to avoid a brittle concrete failure, existing doubly reinforced members should not be strengthened by FRP composites.

Page generated in 0.4932 seconds