• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 269
  • 41
  • Tagged with
  • 310
  • 310
  • 297
  • 296
  • 73
  • 73
  • 71
  • 58
  • 55
  • 38
  • 37
  • 35
  • 30
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Coupled Liquid Separation and Spectrometric Detection of Organic Compounds Containing Hetero-atoms

Nilsson, Eva January 2004 (has links)
This thesis exemplifies the strength in the combination of inductively coupled plasma (ICP) spectrometry and electrospray ionization tandem mass spectrometry ESI-MS/MS as detection techniques for liquid chromatography (LC) in the search for and investigation of compounds that bind or can bind hetero-atoms. Furthermore, some aspects involved in the coupling of LC and ICP spectrometry and quantification without identical standards have been studied. The importance of using a separation step in combination with ICP spectrometry was shown for urine and blood plasma samples from patients treated with boron neutron capture therapy. In addition to the carrier molecule used in the therapy, one major and a few possible minor metabolites were found in the urine samples. One fragment mass of the major metabolite was obtained with LC-ESI-MS/MS. Liquid chromatography coupled to ICP-MS was also shown to be a valuable tool for fingerprinting metal-binding compounds in complex matrices, such as siderophores (iron-complexing compounds) in soil. The presence of at least two siderophores in a field soil solution sample could be revealed by LC-ICP-MS. Their identities could thereafter be determined by LC-ESI-MS/MS. The non-UV-absorbing o-carboranylalanine could be quantified in relation to its degradation products by LC-ICP-AES, which provided information about the mechanism behind the degradation. Moreover, LC-ICP spectrometry was shown to provide an accurate quantification of biomolecules (bias < 10 %) when evaluated from external calibration graphs based on inorganic elemental standards. Finally, the causes of the large decrease in boron signal seen when adding acetonitrile to the LC mobile phase in LC-ICP-MS was investigated in some detail. Space charge effects might explain a large part of the depression from carbon species on the boron signal.
42

Development of Micro Liquid Separation Techniques using Electrospray Ionisation Mass Spectrometry in the Analysis of Polar Compounds and Proteins/Peptides

Samskog, Jenny January 2003 (has links)
Electrospray ionisation (ESI) coupled to mass spectrometry (MS) is one of the most important detection techniques for chemical analysis of small drugs as well as large biomolecules in life science today. In this thesis, aspects on improved compatibility between liquid based separation systems and mass spectrometric detection were investigated regarding buffers, sample preparation and analysis of polar compounds as well as peptides and protein digests for enhanced ESI-MS performance. Capillary electrophoresis (CE) coupled to ESI-MS detection, was evaluated using both a sheath flow interface and a sheathless design. The separation of peptides and small, polar compounds was optimised for both CE-ESI interfaces. The effect of sheath liquid composition was also studied with the aim to improve sensitivity in the ESI-MS detection. Polar compounds were retained and separated by capillary ion-pair chromatography coupled to ESI-MS detection. Since commonly used ion-pairing reagents are detrimental to the ESI process they were effectively removed before the ionisation by the use of a trapping column after the separation. Alternatively, the ion-pairing reagents were exchanged to volatile constituents. A method for peptide mapping by liquid chromatography (LC)-ESI-MS was developed for lactate dehydrogenase. The method was further enhanced to involve the proteolysis on-line to the LC-ESI-MS. No manual sample handling was then needed and the total analysis time decreased from 7 to 1.5 hours. The amount of information was also shown to increase in the on-line system. Finally, the on-line concept was extended to an innovative interface for direct coupling of a pumped liquid flow to an electroosmotically driven flow. This provided a valve-free sample transfer between capillary LC and CE, aiming towards increased peak capacity per unit time for the analysis of complex peptide samples.
43

Improved Techniques for Sampling and Sample Introduction in Gas Chromatography

Bonn, Jonas January 2008 (has links)
<p>Sampling and sample introduction are two key steps in quantitative gas chromatography. In this thesis, a development of a previously described sampling technique as well as a novel concept for sample introduction in gas chromatography are presented. The thesis is based on two papers.</p><p>Paper I describes a method for preparing physically mixed polymers for use as sorbent phases in open tubular trapping of gaseous analytes. The concept is based on mechanical disintegration and mixing of solid or liquid poly(ethylene glycol), PEG, into poly(dimethylsiloxane), PDMS, in a straightforward manner. The resulting mixture exhibits a higher affinity towards polar analytes, as compared to pure PDMS.</p><p>Paper II describes a novel approach to liquid sample introduction with the split/splitless inlet, used in gas chromatography. Classical injection techniques struggle with discrimination of high boiling analytes and poor repeatability of the injected amount of analytes. The presented injection technique utilizes high voltage to obtain a spraying effect of the injected liquid. The spraying effect can be achieved with a cold needle, which is unprecedented for gas chromatographic injections. The cold needle spraying results in highly repeatable injections, free from discrimination of high boiling analytes.</p>
44

Development of preprocessing methods for multivariate sensor data /

Artursson, Tom, January 2002 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2002. / Härtill 5 uppsatser.
45

Identification and characterization of peptides and proteins using fourier transform ion cyclotron resonance mass spectroscopy /

Palmblad, Magnus, January 1900 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2002. / Härtill 9 uppsatser.
46

Measuring microbial activity with an electronic tongue /

Söderström, Charlotte, January 2003 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2003. / Härtill 4 uppsatser.
47

Metodutveckling och analys av skumdämpare, ett additiv i vattenburna färgsystem, med vätskekromatografi och masspektrometri

Andersson, Simon January 2017 (has links)
Paints mostly consist of three major components which are binder, pigment/filler andsolvent. Many other components are added in smaller amount and these are calledadditives. One of these additives is defoamers which are added to the paint todecrease foam which can cause defects in the dried paint for example as pores. Thisstudy was about investigating if the defoamers can be identified and quantified withhigh performance liquid chromatography coupled to mass spectrometry. This includessample preparation, chromatographic separation and detector settings. Calibrationcurves where constructed for paints containing different concentrations of defoamerand for a paint with 0% defoamer where different concentration of defoamer whereadded. Standard addition was done for a paint. Matrix effects were investigated bycomparing signal from defoamer in MeOH compared in paint. This study showed thatthe sample preparation of paints should involve dilution in MeOH or water followedby adding of formic acid and centrifugation and filtration to avoid problems in theinstrument. It is possible to identify if a defoamer is present in paint. Quantificationhas not been achieved, due to possible matrix effects and different response whendefoamer is added to the paint before analysis compared to when the defoamer isadded in the manufacturing process.
48

Improved Techniques for Sampling and Sample Introduction in Gas Chromatography

Bonn, Jonas January 2008 (has links)
Sampling and sample introduction are two key steps in quantitative gas chromatography. In this thesis, a development of a previously described sampling technique as well as a novel concept for sample introduction in gas chromatography are presented. The thesis is based on two papers. Paper I describes a method for preparing physically mixed polymers for use as sorbent phases in open tubular trapping of gaseous analytes. The concept is based on mechanical disintegration and mixing of solid or liquid poly(ethylene glycol), PEG, into poly(dimethylsiloxane), PDMS, in a straightforward manner. The resulting mixture exhibits a higher affinity towards polar analytes, as compared to pure PDMS. Paper II describes a novel approach to liquid sample introduction with the split/splitless inlet, used in gas chromatography. Classical injection techniques struggle with discrimination of high boiling analytes and poor repeatability of the injected amount of analytes. The presented injection technique utilizes high voltage to obtain a spraying effect of the injected liquid. The spraying effect can be achieved with a cold needle, which is unprecedented for gas chromatographic injections. The cold needle spraying results in highly repeatable injections, free from discrimination of high boiling analytes. / QC 20101105
49

Electrochemical Aspects of Miniaturized Analytical Platforms

Klett, Oliver January 2003 (has links)
<p>This thesis ties some electrochemical aspects of development and fabrication of an analytical system on a microchip together. These aspects develop through the fundamentals of amperometric detection in microsystems and microfabrication via the interaction of electrochemical detection and electrophoretic separation finally to the interfacing of a microsystem to the macro world.</p><p>Paper <b>I</b> deals with amperometric detection in microscale systems and describes the fabrication of the necessary on-chip microelectrodes together with fluidic channels in silicon. It was furthermore studied, if the interelectrode distance of some μm could be used to improve the sensitivity in amperometric detection by employing redox cycling. </p><p>Papers <b>II</b>, <b>III</b> and <b>IV</b> deal with the effect of a high voltage field on amperometric detection. In analytical microdevices typically an electrophoretic separation step (e.g. capillary electrophoresis, CE) precedes the detection. The interference of the CE high voltage with the amperometric detection potential is often considered one of the main hindrances for an effective combination of these techniques. In paper <b>II</b> one reason for the observed disturbing potential shift was elucidated. It was shown that positioning of working electrode and reference electrode on an equipotiental surface eliminates this problem. Paper <b>III</b> reports an application of this technique. In paper <b>IV</b> it could be shown that this approach could further be used to significantly reduce the instrumental requirements for amperometric detection in CE.</p><p>Papers <b>V</b>, <b>VI</b>, <b>VII</b>, finally discuss the interfacing of low volumetric flows that typically occur on microanalytical devices to other techniques. Both, interfacing from liquid to liquid phase (μLC to CE in paper <b>V</b>) and from liquid to gas phase (CE to MS in paper <b>VI</b> and <b>VII</b>) were discussed. Electrochemical methods are used in this context to evaluate the stability and, in paper <b>VI</b> and <b>VII</b>, to increase the understanding of underlying processes of corrosion.</p>
50

Electrochemical Aspects of Miniaturized Analytical Platforms

Klett, Oliver January 2003 (has links)
This thesis ties some electrochemical aspects of development and fabrication of an analytical system on a microchip together. These aspects develop through the fundamentals of amperometric detection in microsystems and microfabrication via the interaction of electrochemical detection and electrophoretic separation finally to the interfacing of a microsystem to the macro world. Paper I deals with amperometric detection in microscale systems and describes the fabrication of the necessary on-chip microelectrodes together with fluidic channels in silicon. It was furthermore studied, if the interelectrode distance of some μm could be used to improve the sensitivity in amperometric detection by employing redox cycling. Papers II, III and IV deal with the effect of a high voltage field on amperometric detection. In analytical microdevices typically an electrophoretic separation step (e.g. capillary electrophoresis, CE) precedes the detection. The interference of the CE high voltage with the amperometric detection potential is often considered one of the main hindrances for an effective combination of these techniques. In paper II one reason for the observed disturbing potential shift was elucidated. It was shown that positioning of working electrode and reference electrode on an equipotiental surface eliminates this problem. Paper III reports an application of this technique. In paper IV it could be shown that this approach could further be used to significantly reduce the instrumental requirements for amperometric detection in CE. Papers V, VI, VII, finally discuss the interfacing of low volumetric flows that typically occur on microanalytical devices to other techniques. Both, interfacing from liquid to liquid phase (μLC to CE in paper V) and from liquid to gas phase (CE to MS in paper VI and VII) were discussed. Electrochemical methods are used in this context to evaluate the stability and, in paper VI and VII, to increase the understanding of underlying processes of corrosion.

Page generated in 0.0415 seconds