• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ANALYSIS OF CONTINUOUS LEARNING MODELS FOR TRAJECTORY REPRESENTATION

Kendal Graham Norman (15344170) 24 April 2023 (has links)
<p> Trajectory planning is a field with widespread utility, and imitation learning pipelines<br> show promise as an accessible training method for trajectory planning. MPNet is the state<br> of the art for imitation learning with respect to success rates. MPNet has two general<br> components to its runtime: a neural network predicts the location of the next anchor point in<br> a trajectory, and then planning infrastructure applies sampling-based techniques to produce<br> near-optimal, collision-less paths. This distinction between the two parts of MPNet prompts<br> investigation into the role of the neural architectures in the Neural Motion Planning pipeline,<br> to discover where improvements can be made. This thesis seeks to explore the importance<br> of neural architecture choice by removing the planning structures, and comparing MPNet’s<br> feedforward anchor point predictor with that of a continuous model trained to output a<br> continuous trajectory from start to goal. A new state of the art model in continuous learning<br> is the Neural Flow model. As a continuous model, it possess a low standard deviation runtime<br> which can be properly leveraged in the absence of planning infrastructure. Neural Flows also<br> output smooth, continuous trajectory curves that serve to reduce noisy path outputs in the<br> absence of lazy vertex contraction. This project analyzes the performance of MPNet, Resnet<br> Flow, and Coupling Flow models when sampling-based planning tools such as dropout, lazy<br> vertex contraction, and replanning are removed. Each neural planner is trained end-to-end in<br> an imitation learning pipeline utilizing a simple feedforward encoder, a CNN-based encoder,<br> and a Pointnet encoder to encode the environment, for purposes of comparison. Results<br> indicate that performance is competitive, with Neural Flows slightly outperforming MPNet’s<br> success rates on our reduced dataset in Simple2D, and being slighty outperformed by MPNet<br> with respect to collision penetration distance in our UR5 Cubby test suite. These results<br> indicate that continuous models can compete with the performance of anchor point predictor<br> models when sampling-based planning techniques are not applied. Neural Flow models also<br> have other benefits that anchor point predictors do not, like continuity guarantees, the ability<br> to select a proportional location in a trajectory to output, and smoothness. </p>

Page generated in 0.0658 seconds