• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Studies of the Combined Effects of Interactions and Disorder at Metal-Insulator Transitions

CHEN, XI 26 May 2009 (has links)
We first study noninteracting electrons moving on corner-sharing tetrahedral lattices, which represent the conduction path of LiAlyTi2−yO4. A uniform box distribution type of disorder for the on-site energies is assumed. Using the Dyson-Mehta Delta-3 statistics as a criterion for localization, we have determined the critical disorder (Wc/t = 14.5 ± 0.25) and the mobility-edge trajectories. Then we study the Anderson-Hubbard model, which includes both interactions and disorder, using a real-space self-consistent Hartree-Fock theory. We provide a partial assessment on how the Hartree-Fock theory approximates the ground states of the Anderson-Hubbard model, using small clusters which can be solved exactly. The Hartree-Fock theory works very well in reproducing the ground-state energies and local charge densities. However, it does not work as well in representing the spin-spin correlations. To find the ground state, one needs to allow maximum degree of freedom in spins. Evidence of screening of disorder by the interactions is provided. We have applied the Hartree-Fock theory to large-scale three-dimensional simple cubic lattices. For a disorder strength of W/t = 6, weak interactions (U/t ≤ 3) enhance the density of states at the Fermi level and the low-frequency conductivity. There are no local magnetic moments, and the AC conductivity is Drude-like. With stronger interactions (U/t ≥ 4), the density of states at the Fermi level and the low-frequency conductivity are both suppressed. These are accompanied by the presence of local magnetic moments, and the conductivity becomes non-Drude-like. A metal-to-insulator transition is likely to take place at a critical Uc/t ≈ 8 – 9. We find that (i) the formation of magnetic moments is essential to the suppression of the density of states at the Fermi level, and therefore essential to the metal-insulator transition; (ii) the form of magnetic moments does not matter; and (iii) these results do not depend on the type of lattice or the type of disorder. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-05-26 02:20:04.652
2

Disorder-induced quantum phenomena in inhomogeneous optical lattices / 空間的に非一様な光格子系における乱れによって誘起される量子現象

Sakaida, Masaru 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19476号 / 理博第4136号 / 新制||理||1595(附属図書館) / 32512 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川上 則雄, 教授 石田 憲二, 教授 高橋 義朗 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
3

Dual Fermion Approach to Disordered Correlated Systems

Haase, Patrick 25 September 2015 (has links)
No description available.

Page generated in 0.0612 seconds