• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intraluminal Content is Required for the Maintenance of Antigrade Proluminal Movement of 3H-Androgens into Rat Caput Epididymal Tubules

MIYAKE, KOJI, TSUJI, YOSHIKAZU, HIBI, HATSUKI, YAMAMOTO, MASANORI 25 March 1994 (has links)
No description available.
2

EFFECT OF ALBUMIN ON PROLUMINAL MOVEMENT OF 3H-ANDROGEN INTO SEMINIFEROUS AND EPIDIDYMAL TUBULES AND ANDROGEN BINDING IN THE INTERSTITIUM OF THE TESTIS AND EPIDIDYMIS AFTER PERIFUSION WITH FLUID CONTAINING ALBUMIN

MIYAKE, KOJI, HIBI, HATSUKI, YAMAMOTO, MASANORI 26 December 1994 (has links)
No description available.
3

Structural characterization of androgen receptor interactions with nonsteroidal ligands

Bohl, Casey Edward. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2006 May 17.
4

The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family

Janousek, Vaclav, Karn, Robert, Laukaitis, Christina January 2013 (has links)
BACKGROUND:Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes.RESULTS:Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome.CONCLUSIONS:We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study.
5

Dehydroepiandrosterone action in the cardiovascular system

Williams, Maro R. I., 1974- January 2002 (has links)
Abstract not available
6

Ontogeny of the androgen receptor in the hippocampus of the Sprague-Dawley rat /

Babstock, Doris M., January 1999 (has links)
Thesis (Ph.D.), Memorial University of Newfoundland, 2000. / Bibliography: leaves 109-124.

Page generated in 0.0784 seconds