• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vav3 Potentiation of Androgen Receptor Activity in Prostate Cancer

Rao, Shuyun 20 January 2010 (has links)
Most patients undergoing androgen deprivation therapy relapse eventually and progress to androgen-independent (AI) prostate cancer. Although the mechanisms underlying progression to AI prostate cancer are not well understood, studies suggest that androgen receptor (AR) is still required for AI prostate cancer. Our lab found that Vav3, a Rho GTPase guanine nucleotide exchange factor (GEF), is up-regulated during the progression of androgen-dependent human prostate cancer cells to androgen-independence in vivo and in cell-based experiments. Since Vav3 significantly increases ligand-dependent AR transcriptional activity and this action requires the Vav3 pleckstrin homology (PH) domain but not Vav3 GEF activity, we explored the role of the Vav3 PH domain in ligand-dependent AR coactivation by Vav3. We found that targeting the Vav3 PH mutant into nuclei but not the plasma membrane restored Vav3 PH mutant in AR coactivation. Targeting Vav3 to the plasma membrane eliminated the capacity of Vav3 to coactivate AR. In agreement with nuclear targeting of Vav3 via its PH domain, chromatin immunoprecipitation assays showed that Vav3 enhancement of AR transcriptional activity was accompanied by Vav3 recruitment to AR transcriptional complexes at an AR target gene enhancer. Further, Vav3 increased AR occupancy at the target gene enhancer upon androgen treatment and this may underlie the capacity of Vav3 to enhance AR transcriptional activity. Because Vav3 can also be activated by growth factors (GFs) and GFs activate AR in the absence of androgen (ligand-independent), we investigated the crosstalk between Vav3 and GF activation of AR and found Vav3 strongly enhanced AR transcriptional activity induced by GFs. GEF function and the downstream Rho GTPase, Rac1 were required for constitutively active (Ca) Vav3 activation of AR, which differs from Vav3 activation of AR in the presence of androgen. We also investigated the possible signal pathways contributing to AR activation by Ca Rac1. Ca Rac1 caused ligand-independent activation of AR in part through MAPK/ERK signaling and conferred prostate cancer growth in the absence of androgen in cell culture, soft agar and mouse tumor xenografts. Thus, our findings indicate that Vav3 activates AR in the presence or absence of ligand through two distinct mechanisms, which supports a versatile regulatory effect of Vav3 in AR signaling and prostate cancer progression.
2

The anti-proliferative effects of thiazolidinediones and non-steriodal anti-inflammatory drugs on androgen-independent prostate cancer

Chew, Angela Christine January 2009 (has links)
[Truncated abstract] In recent years a better understanding of the biology of PPAR , a nuclear transcription factor, has emerged, leading to a resurgence in targeting PPAR for chemotherapy. The family of synthetic PPAR agonists, the thiazolidinediones (TZDs), and non-steroidal anti-inflammatory drugs (NSAIDs) have been implicated in the inhibition of cell proliferation, apoptosis and cell cycle arrest of androgen-sensitive (LNCaP) and androgen-independent (PC-3 and DU145) prostate cancer cells generating much interest in their use for potential curative cancer therapies. In light of the potential use of TZDs and NSAIDs in prostate cancer prevention and their ability to induce inhibitory effects in vitro and in vivo, the first aim of this project was to undertake a comprehensive study of the effects of ciglitazone (TZD) and indomethacin (NSAID) on the androgen-independent prostate cancer cell line DU145, using standardised concentrations and time-points to compare the effects of TZDs and NSAIDs on cell proliferation, cell cycle and apoptosis. Treating the cells with either 10 µM ciglitazone or 10 µM indomethacin resulted in a time-dependent decrease in DU145 cell proliferation. The anti-proliferative effects were found to be in-part attributed to the slowing of cell progression through the G1/S-phase checkpoint of the cell cycle, and in the case of ciglitazone, apoptosis also played a role in its anti-proliferative effects in this cell line. Interestingly, although indomethacin failed to induce apoptosis, its antiproliferative effects were more potent than ciglitazone. The second aim of this project was to further investigate the underlying mechanisms responsible for the anti-proliferative effects of ciglitazone and indomethacin by evaluating their ability to modulate PPAR mRNA and protein expression, and to induce PPAR transcriptional activity. ... In addition, ligandinduced regulation of secreted frizzled related protein 4 (sFRP4) expression, a Wnt/ - catenin antagonists, was investigated. It was demonstrated that both ciglitazone and indomethacin attenuated Wnt/ -catenin signalling via the down-regulation of total - catenin levels within the cells, inhibition or slowing of the translocation of cytoplasmic -catenin into the nucleus and inhibition of cyclin–D1 expression An inverse relationship between PPAR and -catenin protein levels was also detected, suggesting that PPAR may directly bind to -catenin itself. sFRP4 expression was transiently upregulated by ciglitazone and indomethacin-treatment, suggesting that the antiproliferative effects of the ligands may be mediated in part through regulation of sFRP4 mRNA and protein levels. In summary, the anti-proliferative effects of ciglitazone and indomethacin on the androgen-independent prostate cancer cell line, DU145, described in this thesis are progressive steps in characterising the role of PPAR in prostate cancer cell proliferation. The identification of indomethacin as a more potent PPAR agonist than ciglitazone represents a novel target for the development of preventative strategies for advanced disease, and the relationship between PPAR and the Wnt/ -catenin signalling pathway provide an insight into the mechanisms involved in the anti-proliferative effects of ciglitazone and indomethacin. Further studies into this relationship would advance help identify novel preventative and curative therapeutic strategies for advanced prostate cancer.

Page generated in 0.1567 seconds