Spelling suggestions: "subject:"anfragebeantwortung"" "subject:"abfragebeantwortung""
1 |
Using Ontology-Based Data Access to Enable Context Recognition in the Presence of Incomplete InformationThost, Veronika 24 August 2017 (has links) (PDF)
Ontology-based data access (OBDA) augments classical query answering in databases by including domain knowledge provided by an ontology. An ontology captures the terminology of an application domain and describes domain knowledge in a machine-processable way. Formal ontology languages additionally provide semantics to these specifications. Systems for OBDA thus may apply logical reasoning to answer queries; they use the ontological knowledge to infer new information, which is only implicitly given in the data. Moreover, they usually employ the open-world assumption, which means that knowledge not stated explicitly in the data or inferred is neither assumed to be true nor false. Classical OBDA regards the knowledge however only w.r.t. a single moment, which means that information about time is not used for reasoning and hence lost; in particular, the queries generally cannot express temporal aspects.
We investigate temporal query languages that allow to access temporal data through classical ontologies. In particular, we study the computational complexity of temporal query answering regarding ontologies written in lightweight description logics, which are known to allow for efficient reasoning in the atemporal setting and are successfully applied in practice. Furthermore, we present a so-called rewritability result for ontology-based temporal query answering, which suggests ways for implementation. Our results may thus guide the choice of a query language for temporal OBDA in data-intensive applications that require fast processing, such as context recognition.
|
2 |
Most Probable Explanations for Probabilistic Database Queries: Extended VersionCeylan, Ismail Ilkan, Borgwardt, Stefan, Lukasiewicz, Thomas 28 December 2023 (has links)
Forming the foundations of large-scale knowledge bases, probabilistic databases have been widely studied in the literature. In particular, probabilistic query evaluation has been investigated intensively as a central inference mechanism. However, despite its power, query evaluation alone cannot extract all the relevant information encompassed in large-scale knowledge bases. To exploit this potential, we study two inference tasks; namely finding the most probable database and the most probable hypothesis for a given query. As natural counterparts of most probable explanations (MPE) and maximum a posteriori hypotheses (MAP) in probabilistic graphical models, they can be used in a variety of applications that involve prediction or diagnosis tasks. We investigate these problems relative to a variety of query languages, ranging from conjunctive queries to ontology-mediated queries, and provide a detailed complexity analysis.
|
3 |
Ontology-Mediated Queries for Probabilistic Databases: Extended VersionBorgwardt, Stefan, Ceylan, Ismail Ilkan, Lukasiewicz, Thomas 28 December 2023 (has links)
Probabilistic databases (PDBs) are usually incomplete, e.g., contain only the facts that have been extracted from the Web with high confidence. However, missing facts are often treated as being false, which leads to unintuitive results when querying PDBs. Recently, open-world probabilistic databases (OpenPDBs) were proposed to address this issue by allowing probabilities of unknown facts to take any value from a fixed probability interval. In this paper, we extend OpenPDBs by Datalog± ontologies, under which both upper and lower probabilities of queries become even more informative, enabling us to distinguish queries that were indistinguishable before. We show that the dichotomy between P and PP in (Open)PDBs can be lifted to the case of first-order rewritable positive programs (without negative constraints); and that the problem can become NP^PP-complete, once negative constraints are allowed. We also propose an approximating semantics that circumvents the increase in complexity caused by negative constraints.
|
4 |
Preferential Query Answering in the Semantic Web with Possibilistic NetworksBorgwardt, Stefan, Fazzinga, Bettina, Lukasiewicz, Thomas, Shrivastava, Akanksha, Tifrea-Marciuska, Oana 28 December 2023 (has links)
In this paper, we explore how ontological knowledge expressed via existential rules can be combined with possibilistic networks (i) to represent qualitative preferences along with domain knowledge, and (ii) to realize preference-based answering of conjunctive queries (CQs). We call these combinations ontological possibilistic networks (OP-nets). We define skyline and k-rank answers to CQs under preferences and provide complexity (including data tractability) results for deciding consistency and CQ skyline membership for OP-nets. We show that our formalism has a lower complexity than a similar existing formalism.
|
5 |
Query Answering in Probabilistic Data and Knowledge BasesCeylan, Ismail Ilkan 04 June 2018 (has links) (PDF)
Probabilistic data and knowledge bases are becoming increasingly important in academia and industry. They are continuously extended with new data, powered by modern information extraction tools that associate probabilities with knowledge base facts. The state of the art to store and process such data is founded on probabilistic database systems, which are widely and successfully employed. Beyond all the success stories, however, such systems still lack the fundamental machinery to convey some of the valuable knowledge hidden in them to the end user, which limits their potential applications in practice. In particular, in their classical form, such systems are typically based on strong, unrealistic limitations, such as the closed-world assumption, the closed-domain assumption, the tuple-independence assumption, and the lack of commonsense knowledge. These limitations do not only lead to unwanted consequences, but also put such systems on weak footing in important tasks, querying answering being a very central one. In this thesis, we enhance probabilistic data and knowledge bases with more realistic data models, thereby allowing for better means for querying them. Building on the long endeavor of unifying logic and probability, we develop different rigorous semantics for probabilistic data and knowledge bases, analyze their computational properties and identify sources of (in)tractability and design practical scalable query answering algorithms whenever possible. To achieve this, the current work brings together some recent paradigms from logics, probabilistic inference, and database theory.
|
6 |
Using Ontology-Based Data Access to Enable Context Recognition in the Presence of Incomplete InformationThost, Veronika 19 June 2017 (has links)
Ontology-based data access (OBDA) augments classical query answering in databases by including domain knowledge provided by an ontology. An ontology captures the terminology of an application domain and describes domain knowledge in a machine-processable way. Formal ontology languages additionally provide semantics to these specifications. Systems for OBDA thus may apply logical reasoning to answer queries; they use the ontological knowledge to infer new information, which is only implicitly given in the data. Moreover, they usually employ the open-world assumption, which means that knowledge not stated explicitly in the data or inferred is neither assumed to be true nor false. Classical OBDA regards the knowledge however only w.r.t. a single moment, which means that information about time is not used for reasoning and hence lost; in particular, the queries generally cannot express temporal aspects.
We investigate temporal query languages that allow to access temporal data through classical ontologies. In particular, we study the computational complexity of temporal query answering regarding ontologies written in lightweight description logics, which are known to allow for efficient reasoning in the atemporal setting and are successfully applied in practice. Furthermore, we present a so-called rewritability result for ontology-based temporal query answering, which suggests ways for implementation. Our results may thus guide the choice of a query language for temporal OBDA in data-intensive applications that require fast processing, such as context recognition.
|
7 |
Ontology-Mediated Query Answering over Log-Linear Probabilistic Data: Extended VersionBorgwardt, Stefan, Ceylan, Ismail Ilkan, Lukasiewicz, Thomas 28 December 2023 (has links)
Large-scale knowledge bases are at the heart of modern information systems. Their knowledge is inherently uncertain, and hence they are often materialized as probabilistic databases. However, probabilistic database management systems typically lack the capability to incorporate implicit background knowledge and, consequently, fail to capture some intuitive query answers. Ontology-mediated query answering is a popular paradigm for encoding commonsense knowledge, which can provide more complete answers to user queries. We propose a new data model that integrates the paradigm of ontology-mediated query answering with probabilistic databases, employing a log-linear probability model. We compare our approach to existing proposals, and provide supporting computational results.
|
8 |
Query Answering in Probabilistic Data and Knowledge BasesCeylan, Ismail Ilkan 29 November 2017 (has links)
Probabilistic data and knowledge bases are becoming increasingly important in academia and industry. They are continuously extended with new data, powered by modern information extraction tools that associate probabilities with knowledge base facts. The state of the art to store and process such data is founded on probabilistic database systems, which are widely and successfully employed. Beyond all the success stories, however, such systems still lack the fundamental machinery to convey some of the valuable knowledge hidden in them to the end user, which limits their potential applications in practice. In particular, in their classical form, such systems are typically based on strong, unrealistic limitations, such as the closed-world assumption, the closed-domain assumption, the tuple-independence assumption, and the lack of commonsense knowledge. These limitations do not only lead to unwanted consequences, but also put such systems on weak footing in important tasks, querying answering being a very central one. In this thesis, we enhance probabilistic data and knowledge bases with more realistic data models, thereby allowing for better means for querying them. Building on the long endeavor of unifying logic and probability, we develop different rigorous semantics for probabilistic data and knowledge bases, analyze their computational properties and identify sources of (in)tractability and design practical scalable query answering algorithms whenever possible. To achieve this, the current work brings together some recent paradigms from logics, probabilistic inference, and database theory.
|
9 |
Closed-World Semantics for Conjunctive Queries with Negation over ELH⊥ Ontologies: Extended VersionBorgwardt, Stefan, Forkel, Walter 28 December 2023 (has links)
Ontology-mediated query answering is a popular paradigm for enriching answers to user queries with background knowledge. For querying the absence of information, however, there exist only few ontology-based approaches. Moreover, these proposals conflate the closed-domain and closed-world assumption, and therefore are not suited to deal with the anonymous objects that are common in ontological reasoning. We propose a new closed-world semantics for answering conjunctive queries with negation over ontologies formulated in the description logic ELH⊥, which is based on the minimal canonical model. We propose a rewriting strategy for dealing with negated query atoms, which shows that query answering is possible in polynomial time in data complexity.
|
10 |
Finding New Diamonds: Temporal Minimal-World Query Answering over Sparse ABoxes: Extended VersionBorgwardt, Stefan, Forkel, Walter, Kovtunova, Alisa 29 December 2023 (has links)
Lightweight temporal ontology languages have become a very active field of research in recent years. Many real-world applications, like processing electronic health records (EHRs), inherently contain a temporal dimension, and require efficient reasoning algorithms. Moreover, since medical data is not recorded on a regular basis, reasoners must deal with sparse data with potentially large temporal gaps. In this paper, we introduce a temporal extension of the tractable language ELH⊥, which features a new class of convex diamond operators that can be used to bridge temporal gaps. We develop a completion algorithm for our logic, which shows that entailment remains tractable. Based on this, we develop a minimal-world semantics for answering metric temporal conjunctive queries with negation. We show that query answering is combined first-order rewritable, and hence in polynomial time in data complexity.
|
Page generated in 0.3017 seconds