• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 12
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Zásobní buňky a jejich role ve fyziologii želvušek. / Storage cells and their role in tardigrade physiology.

Czerneková, Michaela January 2020 (has links)
STORAGE CELLS AND THEIR ROLE IN TARDIGRADE PHYSIOLOGY Abstract Tardigrades possess remarkable tolerance to numerous stress conditions (e.g. almost complete desiccation, exposure to very low sub-zero temperature, heat stress and even exposure to space in low Earth orbit). Indeed, they are among the most radiation-resistant multi-cellular organisms. The body cavity of tardigrades is filled with the storage cells (SC). Their role in anhydrobiosis has been discussed. The main objectives of this work were to analyse (i) the occurrence of mitosis in SC, (ii) the factors constraining anhydrobiotic survival, and (iii) the general ultrastructure of SC and their ultrastructure concerning the stress conditions. Our model species, R. cf. coronifer is one of the most extensively studied tardigrades concerning anhydrobiosis. Comprehensive histochemical techniques were used in combination with SEM, TEM, and confocal microscopy. First, mitotic divisions of tardigrade SC occur with a higher frequency in juveniles than in adults and correlate with animal growth. Mitosis is more frequent in moulting tardigrades, but the overall mitotic index is low. Furthermore, tardigrades of R. cf. coronifer can survive the maximum of 6 repeated desiccation cycles with significantly declining survival rate with repeated desiccations and...
12

Genomic Analysis of Nematode-Environment Interaction

Adhikari, Bishwo 15 July 2010 (has links) (PDF)
The natural environments of organisms present a multitude of biotic and abiotic challenges that require both short-term ecological and long-term evolutionary responses. Though most environmental response studies have focused on effects at the ecosystem, community and organismal levels, the ultimate controls of these responses are located in the genome of the organism. Soil nematodes are highly responsive to, and display a wide variety of responses to changing environmental conditions, making them ideal models for the study of organismal interactions with their environment. In an attempt to examine responses to environmental stress (desiccation and freezing), genomic level analyses of gene expression during anhydrobiosis of the Antarctic nematode Plectus murrayi was undertaken. An EST library representative of the desiccation induced transcripts was established and the transcripts differentially expressed during desiccation stress were identified. The expressed genome of P. murrayi showed that desiccation survival in nematodes involves differential expression of a suite of genes from diverse functional areas, and constitutive expression of a number of stress related genes. My study also revealed that exposure to slow desiccation and freezing plays an important role in the transcription of stress related genes, improves desiccation and freezing survival of nematodes. Deterioration of traits essential for biological control has been recognized in diverse biological control agents including insect pathogenic nematodes. I studied the genetic mechanisms behind such deterioration using expression profiling. My results showed that trait deterioration of insect pathogenic nematode induces substantial overall changes in the nematode transcriptome and exhibits a general pattern of metabolic shift causing massive changes in metabolic and other processes. Finally, through field observations and molecular laboratory experiments the validity of the growth rate hypothesis in natural populations of Antarctic nematodes was tested. My results indicated that elemental stoichiometry influences evolutionary adaptations in gene expression and genome evolution. My study, in addition to providing immediate insight into the mechanisms by which multicellular animals respond to their environment, is transformative in its potential to inform other fundamental ecological and evolutionary questions, such as the evolution of life-history patterns and the relationship between community structure and ecological function in ecosystems.

Page generated in 0.0465 seconds