Spelling suggestions: "subject:"animal hophysiology"" "subject:"animal ecophysiology""
1131 |
Eicosanoid mediationmodulation in spinal nociceptive mechanisms in the normal rat and in a rat model of chronic painPitcher, Graham Michael. January 2000 (has links)
No description available.
|
1132 |
The regulation of glucose fluxes during exercise in healthy male subjectsLavoie, Carole January 1993 (has links)
No description available.
|
1133 |
The identification of collagenase-generated cleavage products of type II collagen using anti-neoepitope antibodies /Billinghurst, Robert Clark. January 1997 (has links)
No description available.
|
1134 |
Molecular and cellular properties of the human brain Na+H+ exchanger isoform 5Szabo, Elod Zala. January 2002 (has links)
No description available.
|
1135 |
Molecular basis for ion current heterogeneity in normal and diseased heartsZicha, Stephen January 2004 (has links)
No description available.
|
1136 |
Differential distribution of cardiac ion channels as a basis for functional specializationMelnyk, Peter, 1975- January 2004 (has links)
No description available.
|
1137 |
Chloride Channels and Brown Fat CellsSabanov, Victor January 2005 (has links)
<p>Chloride ion channels are macromolecular pores providing for passage of chloride ions (and certain other inorganic and organic anions) through the cell membrane, down their electrochemical gradients. Chloride channels are differentially expressed in various cells, to best suit specific cellular activities. They are present in practically all living cells, and regardless of cell specialization they play an important role in vital housekeeping functions of cell-volume and pH regulation and in membrane potential stabilization. Regulation of cell volume underlies the structural integrity and constancy of the intracellular milieu. A variety of metabolic pathways have been shown to be sensitive to cell volume, and alterations of cell volume and osmoregulation processes can influence various intracellular signaling and organizing factors.</p><p>Volume-regulated anion channels (VRACs) are believed to play a pivotal role in cell-volume regulating processes. In this report I present data from macroscopic patch-clamp studies of VRACs performed in a fibroblast cell line and from single channel studies of chloride channels (tentatively related to VRACs) in mouse brown adipocytes in primary culture.</p><p>One of the characteristic features of the VRACs is their dependence on the presence of cytoplasmic ATP. In whole-cell experiments, removal of ATP from the pipette solution almost completely prevented activation of VRACs, whereas substitution of ATP with the nonhydrolyzable analog ATPγS did not alter the activation of VRACs. The inhibitors of protein tyrosine kinases (PTK) tyrphostin A25 and B46 depressed VRAC currents in both cases (ATP and ATPγS), but a PTK ineffective analog (tyrphostin A1) did not affect VRAC currents. We infer that in the cell preparation we used, ATP has a dual role in VRAC regulation: it is required for channel-protein phosphorylation and it can influence channel activity through non-hydrolytic binding in a ligand-receptor manner. It can additionally be suggested that tyrosine-specific protein kinases can be involved in the regulation of VRACs, independently of the effects of ATP. We also studied cell cycle-related changes in activation of VRACs by osmotic swelling of cells chemically arrested at different phases of the cell cycle. We found no significant changes during most of the cell cycle, except short periods before and after mitosis and in the quiescent G0 state.</p><p>The single Cl<sup>- </sup>channels of brown adipocytes resemble in their electrophysiological phenotype outwardly rectifying Cl<sup>-</sup> channels (ORCCs). We investigated the sensitivity of these channels to intracellular Ca<sup>2+</sup>. It appeared that the commonly used Ca<sup>2+</sup>-chelators EGTA and BAPTA could influence the ORCCs currents by themselves, independently of their calcium chelating effects. In some channels, these chelators induced classical flickery-type block of activity, whereas in others there was quasi-blockage, i.e. a peculiar combination of flickery blockage and overall channel activation. The chloride channel blocking agents DIDS and SITS mimicked the true/quasi blockage of EGTA and BAPTA. These phenomena add to the structure-function characteristics of the ORCC molecule. Moderate inhibitory effect of Ca<sup>2+</sup> within a physiological range of intracellular concentrations (sub-µM) was also detected; however, the biological relevance of this observation, as well as of these Cl<sup>-</sup> channels in general, remains to be clarified.</p>
|
1138 |
Adrenergic signaling in insulin-sensitive tissuesYamamoto, Daniel L. January 2007 (has links)
<p>Glucose metabolism in insulin-sensitive tissues such as skeletal muscle and adipose tissue is tightly regulated by external stimuli. Metabolic changes in these tissues have direct effects on whole body metabolism. Such metabolic changes can be induced or influenced by adrenergic stimulation.</p><p>In L6 skeletal muscle cells, we have seen that the β2-adrenergic receptor increases glycogen synthesis to the same extent as insulin. The β2-adrenergically mediated effect is independent of cyclic AMP but dependent on PI3K.</p><p>In brown adipocytes, our data suggest that signaling from the β-adrenergic receptors consists of an acute cyclic AMP effect that is rapidly desensitized and then a prolonged signal involving PI3K.</p><p>In skeletal muscle cells in culture, we have shown that DPI (a NADPH oxidase inhibitor) increases glucose uptake through a signaling pathway independent of NADPH oxidase and insulin signaling. DPI instead inhibits complex 1 in the mitochondrial respiratory chain, which lowers ATP levels. This activates AMPK, an activator of glucose uptake.</p><p>Furthermore, we have developed a model system for ordered fusion of skeletal muscle cells in culture. In this system, differentiating skeletal muscle cells can be studied separately. This system is optimal for microscopy techniques and easily adaptable for micromanipulations. We have seen that the myogenic factor MyoD can have different expression of the protein in different nuclei within the same myotube. This system could be used with advantage for intracellular signaling and metabolic studies.</p>
|
1139 |
Chloride Channels and Brown Fat CellsSabanov, Victor January 2005 (has links)
Chloride ion channels are macromolecular pores providing for passage of chloride ions (and certain other inorganic and organic anions) through the cell membrane, down their electrochemical gradients. Chloride channels are differentially expressed in various cells, to best suit specific cellular activities. They are present in practically all living cells, and regardless of cell specialization they play an important role in vital housekeeping functions of cell-volume and pH regulation and in membrane potential stabilization. Regulation of cell volume underlies the structural integrity and constancy of the intracellular milieu. A variety of metabolic pathways have been shown to be sensitive to cell volume, and alterations of cell volume and osmoregulation processes can influence various intracellular signaling and organizing factors. Volume-regulated anion channels (VRACs) are believed to play a pivotal role in cell-volume regulating processes. In this report I present data from macroscopic patch-clamp studies of VRACs performed in a fibroblast cell line and from single channel studies of chloride channels (tentatively related to VRACs) in mouse brown adipocytes in primary culture. One of the characteristic features of the VRACs is their dependence on the presence of cytoplasmic ATP. In whole-cell experiments, removal of ATP from the pipette solution almost completely prevented activation of VRACs, whereas substitution of ATP with the nonhydrolyzable analog ATPγS did not alter the activation of VRACs. The inhibitors of protein tyrosine kinases (PTK) tyrphostin A25 and B46 depressed VRAC currents in both cases (ATP and ATPγS), but a PTK ineffective analog (tyrphostin A1) did not affect VRAC currents. We infer that in the cell preparation we used, ATP has a dual role in VRAC regulation: it is required for channel-protein phosphorylation and it can influence channel activity through non-hydrolytic binding in a ligand-receptor manner. It can additionally be suggested that tyrosine-specific protein kinases can be involved in the regulation of VRACs, independently of the effects of ATP. We also studied cell cycle-related changes in activation of VRACs by osmotic swelling of cells chemically arrested at different phases of the cell cycle. We found no significant changes during most of the cell cycle, except short periods before and after mitosis and in the quiescent G0 state. The single Cl- channels of brown adipocytes resemble in their electrophysiological phenotype outwardly rectifying Cl- channels (ORCCs). We investigated the sensitivity of these channels to intracellular Ca2+. It appeared that the commonly used Ca2+-chelators EGTA and BAPTA could influence the ORCCs currents by themselves, independently of their calcium chelating effects. In some channels, these chelators induced classical flickery-type block of activity, whereas in others there was quasi-blockage, i.e. a peculiar combination of flickery blockage and overall channel activation. The chloride channel blocking agents DIDS and SITS mimicked the true/quasi blockage of EGTA and BAPTA. These phenomena add to the structure-function characteristics of the ORCC molecule. Moderate inhibitory effect of Ca2+ within a physiological range of intracellular concentrations (sub-µM) was also detected; however, the biological relevance of this observation, as well as of these Cl- channels in general, remains to be clarified.
|
1140 |
Adrenergic signaling in insulin-sensitive tissuesYamamoto, Daniel L. January 2007 (has links)
Glucose metabolism in insulin-sensitive tissues such as skeletal muscle and adipose tissue is tightly regulated by external stimuli. Metabolic changes in these tissues have direct effects on whole body metabolism. Such metabolic changes can be induced or influenced by adrenergic stimulation. In L6 skeletal muscle cells, we have seen that the β2-adrenergic receptor increases glycogen synthesis to the same extent as insulin. The β2-adrenergically mediated effect is independent of cyclic AMP but dependent on PI3K. In brown adipocytes, our data suggest that signaling from the β-adrenergic receptors consists of an acute cyclic AMP effect that is rapidly desensitized and then a prolonged signal involving PI3K. In skeletal muscle cells in culture, we have shown that DPI (a NADPH oxidase inhibitor) increases glucose uptake through a signaling pathway independent of NADPH oxidase and insulin signaling. DPI instead inhibits complex 1 in the mitochondrial respiratory chain, which lowers ATP levels. This activates AMPK, an activator of glucose uptake. Furthermore, we have developed a model system for ordered fusion of skeletal muscle cells in culture. In this system, differentiating skeletal muscle cells can be studied separately. This system is optimal for microscopy techniques and easily adaptable for micromanipulations. We have seen that the myogenic factor MyoD can have different expression of the protein in different nuclei within the same myotube. This system could be used with advantage for intracellular signaling and metabolic studies.
|
Page generated in 0.0418 seconds