• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

REVISION OF THE GENUS PHRENAPATES GRAY 1832 AND A PRELIMINARY STUDY OF THE SUBTRIBAL LIMITS OF THE SUBFAMILY PHRENAPATINAE (Coleoptera: Tenebrionidae)

Angela Rincon (11185845) 26 July 2021 (has links)
<p> A revision of the Neotropical darkling beetle genus <i>Phrenapates</i> Gray 1832 (Tenebrionidae: Phrenapatinae) was conducted. Using over 300 specimens of Phrenapates, the genus is redescribed with its taxonomic history and classification summarized. Lectotypes are designated for <i>Phrenapates bennettii</i> Gray 1832, <i>P. ohausi</i> Gebien 1910, <i>P. dux</i> Gebien 1910, and <i>P. educator</i> Gebien 1910 to stabilize species concepts. Two new species are described: <i>Phrenapates gilloglyi</i> Rincon & Smith <b>sp. nov.</b> and <i>Phrenapates fortunaensis</i> Rincon & Smith <b>sp. nov.</b> A total of eight species are now recognized (<i>P. bennettii</i>, <i>P. ohausi</i>, <i>P. dux</i>, <i>P. mandibularis</i>, <i>P. educator</i>, <i>P. latreillei</i>, <i>P. gilloglyi</i>, and <i>P. fortunaensis</i>). Distribution maps and a key to <i>Phrenapates</i> species are provided.</p> In order to assess the status and relationships of the tribes in the subfamily Phrenapatinae, a molecular dataset was constructed for phlogenetic analyses. Nine gene regions were used: nuclear wingless (wg), mitochondrial cytochrome b (cytb), mitochondrial cytochrome oxidase I (COI), nuclear Arginine Kinase (ArgK), ribosomal RNA (12S, 16S, & 18S), nuclear ribosomal 28S, and carbamoyl-phosphate synthetase domain of rudimentary (CAD). Taxa were selected based on the availability of nucleotide sequences from the GenBank and BOLD databases, as well as previously unpublished sequences provided by the Smith lab. Phylogenetic analyses revealed that: (1) the subfamily Phrenapatinae is likely monophyletic; (2) <i>Archaeoglenes</i> is sister to the other phrenapatines in all analyses which, alongside morphological evidence, supports the concept of the tribe Archaeoglenini; (3) the relationship between Phrenapatini and Penetini varied between analyses, though morphological characters used to separate the two tribes appear stable; (4) Penetini, the most species rich tribe within the subfamily, may not be monophyletic.
2

<b>Untapped Potential: Systematics and Evolution of the African Toktokkie Beetle (Tenebrionidae: Sepidiini)</b>

Olivia Mcmurry Gearner (17584170) 11 December 2023 (has links)
<p dir="ltr">Sepidiini is a large and morphologically diverse tribe of darkling beetles (Tenebrionidae) in the subfamily Pimeliinae, containing ~1,000 species and subspecies. Despite the presence of many large and charismatic species and the cultural significance of some of its members, the toktokkie beetles, this tribe has been lacking revision at all taxonomic levels. To develop a framework for taxonomic revisionary work, in Chapter 1, I reconstructed a phylogeny of the tribe using targeted enrichment sequencing data. I also scored a comprehensive suite of diagnostic characters for the tribe to test in a phylogenetic context. Based on the results of the study, I proposed revising the subtribe Oxurina Koch, 1955, <b>sens. nov. </b>(now containing the genera <i>Oxura </i>Kirby, 1918, and <i>Miripronotum </i>Louw, 1979) and moving the genera <i>Decoriplus </i>Louw, 1979, <i>Pterostichula </i>Koch, 1952, <i>Stenethmus </i>Gebien, 1937b, and <i>Synhimba </i>Koch, 1952 to a new subtribe Stenethina <b>subtr. nov. </b>The tree topology also supports revising or synonymizing the genera <i>Dichtha </i>Haag Rutenberg, 1871, and <i>Amiantus </i>Fåhraeus, 1870,<i> </i>and revising the genus <i>Somaticus </i>Hope, 1840.</p><p dir="ltr">In Chapter 2, I performed a partial revision of the subtribe Hypomelina Koch 1955. A new genus <i>Bufoniopsis </i><b>gen. nov. </b>is erected containing one newly described species <i>Bufoniopsis hypnosis</i> <b>sp. nov. </b>The genus <i>Hypomelus </i>Solier, 1843, and all of its species are redescribed, and three new species are described: <i>Hypomelus johnprinei</i> <b>sp. nov</b>., <i>Hypomelus lorettalynnae</i> <b>sp. nov.</b>, and <i>Hypomelus tomhalli</i> <b>sp. nov</b>. One species was moved from <i>Hypomelus </i>to <i>Triangulipenna</i><i> </i>Louw 1979<i> </i>and redescribed, <i>Triangulipenna vulipnus </i>(Haag Rutenberg, 1873)<i> </i><b>comb. nov. </b><i>Triangulipenna </i>was redescribed and three new species were described, <i>Triangulipenna tylerchildersi </i><b>sp. nov.</b>, <i>Triangulipenna dollypartonae</i> <b>sp. nov</b>., and <i>Triangulipenna ralphstanleyi</i> <b>sp. nov</b>. A revised key to the genera of Hypomelina is provided as well as keys to the species of <i>Hypomelus </i>and <i>Triangulipenna</i>.</p><p dir="ltr">Toktokkie beetles—members of the subtribe Molurina Solier, 1843—are known for their substrate tapping behavior which is a form of sexual communication in which beetles tap their abdomens on the ground to locate mates. Despite the fact that this behavior is well-known among people in southern Africa, very little research has been done on the topic. In Chapter 3, I document variation in tapping patterns across the subtribe Molurina. Three characters of tap trains were found to vary: length of tap trains, tapping rate, and tapping pattern. Ancestral state reconstruction was performed for each of the characters. Characters were found to be only partially linked to ancestry. Additionally, in any given locality sampled, no two species had the same “song”. This suggests that signal partitioning could be influencing species “songs”.</p>
3

<b>REVISION OF THE GENUS PHILOLITHUS (TENEBRIONIDAE: PIMELIINAE: ASIDINI)</b>

Martha Elise Drake (18402966) 18 April 2024 (has links)
<p dir="ltr"><i>Philolithus</i> is a genus of large, charismatic darkling beetles (Tenebrionidae) with 18 species found throughout the western portion of North America. Despite many species exhibiting mass emergence events as well as the large size of many of these species, much is unknown about this genus. <i>Philolithus</i> has had a number of taxonomic changes over the last century, a comprehensive revision of the genus was not conducted. In chapter 1, I conducted a species-level revision of <i>Philolithus </i>based on a comprehensive list analysis of external adult morphological characteristics. Based on the results of the study, I proposed the following synonymies, valid names listed in parenthesis “()”<i>;</i> <i>P. pantex </i>(= <i>P. actuosus</i>),<i> P. haruspex </i>(= <i>P. actuosus</i>),<i> P. uteanus</i> (= <i>P. actuosus</i>),<i> P. rugosus </i>(= <i>P. actuosus</i>),<i> P. jageri </i>(= <i>P. actuosus</i>),<i> P. adversus </i>(= <i>P. actuosus</i>), <i>P. reflexus </i>(= <i>P. actuosus</i>),<i> P. porcatus </i>(= <i>P. actuosus</i>),<i> P. opimus </i>(= <i>P. actuosus</i>),<i> P. </i><i>quadripennis </i>(= <i>P. carinatus</i>),<i> </i>and <i>P. sophistes </i>(= <i>P. carinatus</i>). Four new species are also described: <i>Philolithus rotundus </i><b>sp. nov.</b><i>, Philolithus zukomollis </i><b>sp. nov.</b><i>, Philolithus clarki </i><b>sp. nov.</b><i>, </i>and <i>Philolithus dorsoplanus </i><b>sp. nov. </b>Revised taxonomic keys were created for the subgenera of <i>Philolithus</i><i>,</i><i> </i>the species of the subgenera <i>Glyptasida </i>and <i>Philolithus, </i>and the subspecies of the monophyletic subgenus <i>Gonasida</i> based on Dr. Kirby Brown’s unpublished dissertation (<u>Brown, 1971a)</u><i>.</i></p><p dir="ltr">In chapter 2, I performed phylogenetic analyses of <i>Philolithus </i>using targeting enrichment, and Sanger sequenced data for the following mitochondrial loci: 12S, 16S, atp6, atp8, cob, cox1, cox2, coc3, nad1, nad2, nad3, nad4, nad5, nad6 and the nuclear ribosomal 28S gene. Recovered topologies support the monophyly of <i>Philolithus </i>from outgroup Asidini genera, as well as the monophyly and species concepts of the subgenera of the genus.</p>
4

Evolutionary Studies of Fruit-Piercing Moths in the Genus Eudocima Billberg (Lepidoptera: Erebidae)

Crystal Klem (7053191) 16 October 2019 (has links)
<p>The prevalence of monoculture and landscape simplification is correlated with diminished biodiversity and increased presence of harmful pest species in crop environments. Lepidoptera is the largest clade of herbivorous insects, with many agriculturally significant species. The pest status of insects in agricultural settings is human-defined based on behaviors that may negatively impact the yield of susceptible crops. As such, both the insect behavior and the affected crop play a part in determining pest status. One helpful means of understanding pest status involves using pest injury guilds, which distinguish different pest groups based on similar kinds of injury to comparable plant tissues. Pest injury guilds defined in the literature are reviewed and then applied to agriculturally-significant Lepidoptera. Specialized Lepidoptera behaviors are reviewed within their respective injury guilds, and the systematics, ecology, and control options for fruit-piercing moths are discussed within the context of pest Lepidoptera behaviors. To address the need for distribution information for economically relevant Lepidoptera, the first annotated checklist of pest Lepidoptera is also provided for the United States and Canada. This checklist includes 80 agriculturally significant Lepidoptera species and complexes, and incorporates notes on distribution, species delimitation, natural history, and establishment.<br></p> <p><b> </b></p> <p>Fruit-piercing moths in the genus <i>Eudocima</i> Billberg, 1820 have significant pest status as adults rather than as larvae, and directly injure fruits using a specially-adapted proboscis. There are at least 48 <i>Eudocima</i> species which are found in the world’s tropics, but confusion persists in the classification of this genus and there are several suspected complexes. Additionally, the area of origin for this group is uncertain, although the Oriental region has been postulated. A comprehensive phylogenetic analysis of <i>Eudocima</i> is conducted using 82 morphological characters, which are each described and figured, and analyzed using parsimony. Results suggest that <i>Eudocima</i> is not monophyletic. Strongly-resolved relationships were recovered, although these did not correspond with previous generic concepts. The Australian region is recovered as the most parsimonious area of origin for <i>Eudocima</i>, and patterns of dispersal, particularly between the Oriental and Australian regions along the Indo-Australian Archipelago, are discussed.</p> <p> </p> <p>The <i>Eudocima phalonia</i>-complex is distributed throughout the Old World and has been the subject of increasing interest and research due to its economic impact in the tropics and status as a potential invasive species. The recent description of closely-related sister species, as well as morphological variation documented within <i>E. phalonia</i> itself, suggests possible speciation occurring within <i>E. phalonia</i> populations across its wide geographic range. To test species boundaries for this taxon, a molecular phylogeny is constructed using anchored hybrid enrichment and a next-generation sequencing approach. Sampling for this phylogeny was informed using a global range map for <i>E. phalonia</i>, which was developed using georeferenced specimen data from natural history collections. Biogeographic analyses are also conducted to investigate the area of origin and dispersal patterns of <i>E. phalonia</i>, and to examine possible speciation modes and gene flow. Georeferenced range information is also utilized along with environmental variables in constructing a correlative environmental niche model using MaxEnt, which is used to evaluate a previous mini risk assessment for environmental suitability in the continental United States for <i>E. phalonia</i> establishment. Results suggest that <i>E. phalonia</i> is monophyletic, with gene flow still occurring between populations. The area of origin for <i>E. phalonia</i> is postulated to be the Oriental region, although further investigation is needed. Range predictions for <i>E. phalonia</i> from environmental modelling were performed for both the Old World, which concurred well with occurrence data, and for the New World. Assessment of environmental suitability for <i>E. phalonia</i> in the continental United States suggests areas in Florida and along the Gulf Coast are most favorable for establishment.</p>
5

Occurrence of featherwing beetles (Coleoptera: Ptiliidae) on polypore fungi (Basidiomycota: Agaricomycetes) from Costa Rica and a new species of Cylindrosella

Jennifer S Topolski (11174796) 23 July 2021 (has links)
<p>Despite being distributed worldwide and easily collected, the biology, ecology, and taxonomy of Ptiliidae Heer, 1843, or featherwing beetles, have not been well studied. In a study from 2007 to 2009, Ptiliidae were extracted from various polypore fungi collected throughout Costa Rica in an effort to expand biogeographic knowledge of Ptiliidae. Fungi and Ptiliidae were identified to genera and collection sites mapped. Beetle genera are able to inhabit different polypore genera and were found at a higher rate of co-occurrence than reported in previous studies. We identified <i>Cylindrosella costariciensis </i><b>sp. n.</b>, with the potential of two more new species to be described.</p>
6

THE PHYLOGENOMICS OF THRIPS (THYSANOPTERA)

David A Stanford-Beale (13989918) 09 November 2022 (has links)
<p><br></p> <p>Thrips, Thysanoptera, represent an ancient (~407 m.y.a.) order of ~6000 tiny insects from 9 families. Despite the small size of the order, thrips have a diversity of life histories, diets, and survival strategies. Thrips represent a challenge to fieldworkers and axonomists alike due to the morphological similarity between species and the lack of homologies between families. Recent </p> <p>molecular evidence has reopened debate over the phylogenetic relationships of the families of Thysanoptera.</p> <p>In this thesis we use genomic approaches to elucidate and clarify the early nodes in order to answer evolutionary questions about the Thysanoptera, their mitochondrion symbiotes, and their </p> <p>coevolutionary interactions with a group of economically important viruses; tospoviruses. Our results support previous ordinal hypotheses and show families in both sub-orders radiating </p> <p>around the emergence of the angiosperms ~120 m.y.a. We show that all thrips lineages likely have highly rearranged mitochondrial genomes, even on an intraspecies level, and that this rearrangement phenomena occurs very quickly in evolutionary time. We provide comment on the caution that must be taken with mitochondrial loci in any phylogenetic analysis with this new </p> <p>evidence and argue for the impact of among-site-rate-heterogeneity to be further investigated within thrips hylogenetics. We show that much more data is needed before thrips and tospovirus relationships can be fully elucidated but that two dueling hypotheses are emergent from our studies: either 5 very new separate vector/virus relationships, or one very old relationship that has been lost by the vast amount of thrips. We call for targeted taxa selection and show how new genomic methods can target certain taxa based upon the identification of </p> <p>assembled proteins from illumine shotgun read data.</p>

Page generated in 0.1264 seconds