• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Local knowledge and the social dimensions of risk : the case of animal biopharming in New Zealand : a thesis submitted in fulfilment of the requirements for the Degree of Master of Arts in Political Science at the University of Canterbury /

Shamy, David Stephen. January 2006 (has links)
Thesis (M.A.)--University of Canterbury, 2006. / Typescript (photocopy). Includes bibliographical references (leaves 132-144). Also available via the World Wide Web.
2

Selection indices for combining marker genetic data and animal model information /

Romano, Eduardo O., January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 128-140). Also available via the Internet.
3

Factors in the production of identical animals by nuclear transfer / by Kenneth John McLaughlin.

McLaughlin, Kenneth John, 1961- January 1991 (has links)
Bibliography: leaves 103-116. / vi, 116 leaves, [6] leaves of plates : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Addresses the practical aspects of using nuclear transfer for the production of identical animals. Results from experiments provide improved understanding of the technical constraints of nuclear transfer. Also the flexibility of the methodology was increased with the use of in vitro culture and/or in vitro matured oocytes. / Thesis (Ph.D.)--University of Adelaide, Dept. of Obstetrics and Gynaecology, 1992
4

Selection indices for combining marker genetic data and animal model information

Romano, Eduardo 19 September 2009 (has links)
It was suggested that marker and phenotypic information be combined in order to obtain more accurate or earlier genetic evaluations. An improvement in accuracy or time of evaluation due to utilization of marker assisted selection (MAS) increases genetic progress. Fernando and Grossman (1989) suggested including marker information directly into the Animal Model, Best Linear Unbiased Prediction system, but several problems need to be solved before their approach becomes feasible. Other selection indices were suggested but either do not use all the available information or are suitable only for evaluation of the offspring of the sire from which the marker information was established. A selection index combining marker and Animal Model information was developed to allow comparisons involving offspring, grandoffspring and great-grandoffspring of a sire. Marker information was assumed to be a least square estimate of the difference between the average effects of the two quantitative trait loci (QTL) alleles present in a sire (D<sub>p</sub>) and the standard error of this estimate (SE(D<sub>p</sub>)). Estimates may have been obtained from a daughter or granddaughter design. Comparisons among grandoffspring and great-grandoffspring also require an estimate of the recombination rate (r) between the marker and the QTL. The Animal Model information consists of predicted transmitting ability (PTA) and reliability of PTA. PTA was assumed not to include any marker information. The expected percentage of the gain in accuracy (PGA) due to the inclusion of marker information in the selection indices is affected by the degree of polymorphism at the marker locus. The polymorphism information content (PIC) of a marker locus was computed for the second and third generations and for mates genotyped or not. PGA increased with larger Dos lower SE(D<sub>p</sub>), lower r, a smaller number of own and progeny records, and larger PIC. PGA and PIC reduce over generations. Marker information in dairy cattle is likely to be used in generations beyond offspring. Then, only the use of highly polymorphic markers with a large and accurately estimated effect may be economically justified. / Master of Science
5

Engineering of gene constructs for ectopic expression in transgenic fish.

January 2001 (has links)
by Yan Hiu Mei, Carol. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 114-126). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.iv / Table of Contents --- p.v / List of Tables --- p.viii / List of Figures --- p.ix / Abbreviations --- p.xii / Chapter CHAPTER 1 --- TRANSGENIC TECHNOLOGY --- p.1 / Chapter 1.1 --- Transgenesis in animals --- p.1 / Chapter 1.2 --- Transgenic fish in toxicology --- p.4 / Chapter 1.2.1 --- Aquatic metal toxicity --- p.4 / Chapter 1.2.2 --- Environmental monitoring of aquatic metal toxicity --- p.5 / Chapter 1.2.3 --- Biomarkers --- p.6 / Chapter 1.3 --- Transgenics in aquaculture --- p.9 / Chapter 1.3.1 --- Revolution is needed in aquaculture --- p.9 / Chapter 1.3.2 --- Aquaculture potential of tilapia in China --- p.10 / Chapter 1.3.3 --- Endocrinology for fish growth --- p.12 / Chapter 1.3.4 --- Growth promotion by exogenous growth hormone in tilapia --- p.14 / Chapter 1.3.5 --- Accelerated growth in transgenic fish --- p.15 / Chapter 1.4 --- General principle in transgenic fish production --- p.16 / Chapter 1.5 --- Project aim --- p.22 / Chapter CHAPTER 2 --- ISOLATION AND CHARACTERIZATION OF ZEBRAFISH METALLOTHIONEIN GENE PROMOTER --- p.23 / Chapter 2.1 --- Introduction --- p.23 / Chapter 2.1.1 --- Metallothionein --- p.23 / Chapter 2.1.2 --- Biological functions --- p.24 / Chapter 2.1.3 --- Metallothionein gene regulations --- p.25 / Chapter 2.1.4 --- Metallothionein as biomarker for metal pollution --- p.26 / Chapter 2.2 --- Materials and methods --- p.28 / Chapter 2.2.1 --- General molecular biology techniques --- p.28 / Chapter 2.2.2 --- Sequences of PCR primers used --- p.31 / Chapter 2.2.3 --- Cloning zebrafish MT gene 5-flanking region --- p.31 / Chapter 2.2.4 --- Cloning zebrafish MT gene --- p.32 / Chapter 2.2.5 --- Cloning full length zMT gene --- p.33 / Chapter 2.2.6 --- Cell culture --- p.35 / Chapter 2.2.7 --- Transient transfection assay --- p.37 / Chapter 2.2.8 --- Electrophoretic mobility shift assay --- p.39 / Chapter 2.3 --- Results --- p.42 / Chapter 2.3.1 --- Zebrafish metallothionein gene --- p.42 / Chapter 2.3.2 --- Deletion analysis of zMT promoter by transient transfection assay --- p.48 / Chapter 2.3.3 --- Functional characterization of zebrafish metallothionein promoter --- p.57 / Chapter 2.4 --- Discussions --- p.61 / Chapter 2.4.1 --- Zebrafish MT gene --- p.61 / Chapter 2.4.2 --- Functional characterization of zebrafish MT promoter --- p.61 / Chapter CHAPTER 3 --- PREPARATION OF GENE CONSTRUCTS FOR TRANSFER IN ZEBRAFISH --- p.65 / Chapter 3.1 --- Introduction --- p.65 / Chapter 3.1.1 --- Zebrafish as model in toxicological studies --- p.65 / Chapter 3.1.2 --- Reporter gene system --- p.66 / Chapter 3.1.3 --- Transgenic reporter fish --- p.68 / Chapter 3.1.4 --- Gene transfer by electroporation in zebrafish --- p.68 / Chapter 3.1.5 --- Objective --- p.69 / Chapter 3.2 --- Materials and methods --- p.70 / Chapter 3.2.1 --- Design of gene constructs for ectopic expression in zebrafish --- p.70 / Chapter 3.2.2 --- Testing electroporation conditions for zebrafish --- p.72 / Chapter 3.3 --- Results --- p.73 / Chapter 3.4 --- Discussions --- p.76 / Chapter 3.4.1 --- Engineering gene constructs --- p.76 / Chapter 3.4.2 --- Applications of transgenic zebrafish --- p.79 / Chapter CHAPTER 4 --- GENE TRANSFER EXPERIMENTS ON TILAPIA --- p.82 / Chapter 4.1 --- Introduction --- p.82 / Chapter 4.2 --- Materials and methods --- p.85 / Chapter 4.2.1 --- Isolation of O. aureus growth hormone --- p.85 / Chapter 4.2.2 --- Engineering gene constructs for ectopic expression in tilapia --- p.86 / Chapter 4.2.3 --- Gene transfer in tilapia --- p.87 / Chapter 4.2.4 --- Screening transgenic tilapia --- p.89 / Chapter 4.3 --- Results --- p.91 / Chapter 4.3.1 --- Tilapia growth hormone --- p.91 / Chapter 4.3.2 --- Gene constructs for ectopic expression in tilapia --- p.94 / Chapter 4.3.3 --- Testing electroporation conditions --- p.96 / Chapter 4.3.4 --- PCR screening for transgenic fish --- p.97 / Chapter 4.4 --- Discussions --- p.101 / Chapter 4.4.1 --- Tilapia growth hormone --- p.101 / Chapter 4.4.2 --- Electroporation experiments on of tilapia eggs --- p.101 / Chapter 4.4.3 --- Improvements on gene construct design for tilapia --- p.104 / Chapter 4.4.4 --- Ethical and safety considerations --- p.106 / Chapter CHAPTER 5 --- REFERENCES --- p.114 / APPENDIX --- p.127

Page generated in 0.1191 seconds