Spelling suggestions: "subject:"anklefoot prosthesis"" "subject:"anklefoot prosthesisb""
1 |
Anticipatory Muscle Responses for Transitioning Between Rigid Surface and Surfaces of Different Compliance: Towards Smart Ankle-foot ProsthesesJanuary 2019 (has links)
abstract: Locomotion is of prime importance in enabling human beings to effectively respond
in space and time to meet different needs. Approximately 2 million Americans live
with an amputation with most of those amputations being of the lower limbs. To
advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt
performance at a level of intelligence seen in human walking. As such, this thesis
focuses on the mechanisms involved during human walking, while transitioning from
rigid to compliant surfaces such as from pavement to sand, grass or granular media.
Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as the platform for
human walking, rigid to compliant surface transitions are simulated. The analysis of
muscular activation during the transition from rigid to different compliant surfaces
reveals specific anticipatory muscle activation that precedes stepping on a compliant
surface. There is also an indication of varying responses for different surface stiffness
levels. This response is observed across subjects. Results obtained are novel and
useful in establishing a framework for implementing control algorithm parameters to
improve powered ankle prosthesis. With this, it is possible for the prosthesis to adapt
to a new surface and therefore resulting in a more robust smart powered lower limb
prosthesis. / Dissertation/Thesis / Masters Thesis Biomedical Engineering 2019
|
2 |
Design and Testing of a Passive Prosthetic Ankle Foot Optimized to Mimic an Able-Bodied GaitSchlafly, Millicent 22 June 2018 (has links)
Currently there are nearly 2 million people living with limb loss in the United States [1]. Many of these individuals are either transtibial (below knee) or transfemoral (above knee) amputees and require an ankle-foot prosthesis for basic mobility. While there are an abundance of options available for individuals who require an ankle-foot prosthesis, these options fail to mimic an intact ankle when it comes to key evaluation criteria such as range of motion, push-off force, and roll over shape. The roll over shape is created by plotting the center of pressure during a step in a shank-based coordinate system. To address the need for a prosthesis that effectively replaces the ankle's contribution to an able-bodied gait, a biomimetic approach is taken in the design the Compliant & Articulating Prosthetic Ankle (CAPA) foot. The passive CAPA foot consists of four components connected by torsion springs representing the Phalanges, Metatarsal bones, Talus, and Calcaneus. Biomimetic functionality is exhibited by CAPA foot with regards to the roll over shape and a linear relationship between moment exerted and ankle angle, distinguishing the CAPA foot from other ankle-foot prostheses. A mathematical model of the CAPA foot is created to determine the roll over shape a specific CAPA foot geometry would produce and support eventual customization of the 3D printed components.
The mathematical model is used to optimize the design to two distinctly different roll over shapes, one with a rocker radius closer to that of the Talus bone and the other closer to the energetically advantageous value of 0.3 times leg length [2, 3]. Compliant and stiff versions of the two CAPA feet were compared to a conventional Solid Articulating Cushioned Heel (SACH) foot and a passive dynamic response foot (Renegade® AT produced by Freedom Innovations). Ten able bodied subjects walked on the Computer Assisted Rehabilitation Environment normally, and then with a transfemoral prosthetic simulator. The study was separated into two experiments. For the second experiment (subjects 6-10), the versions of the CAPA foot had pretension in the dorsiflexion springs.
Overall the ankle angles and sagittal plane ground reaction forces of the CAPA foot better mimicked an intact ankle-foot than the existing passive ankle-foot prostheses. Added pretension increased the sagittal plane ground reaction forces and roll over shape radius of curvature and arc length. Nine out of ten participants preferred the CAPA foot and there was a statistical significant difference (F=14.2, p<0.01) between the difficulty level rating given for trials with the CAPA foot versus the existing ankle-foot prostheses. The mathematical model is found to be capable of accurately predicting experimental roll over shape trends and the concept of roll over shape based design is demonstrated. Successful aspects of the CAPA foot can be applied to other ankle-foot prosthesis. The CAPA foot could provide a passive, cheap, and personalizable ankle-foot prosthesis that improves mobility the quality of life for individual’s lacking an intact ankle.
|
3 |
Design and Prototyping of an Integrated Powered Hip and Microprocessor-Controlled Knee Unit for Hip-Knee-Ankle-Foot ProsthesesBader, Yousef 04 July 2023 (has links)
Hip-knee-ankle-foot (HKAF) prostheses are full lower limb devices for people with hip amputations. They are designed to enable individuals to regain their mobility and move freely with little restriction. HKAFs typically have high rejection rates among users, as well as gait asymmetry and increased trunk anterior-posterior lean and pelvic tilt. In this thesis, a novel integrated hip-knee (IHK) unit was designed and evaluated to address the limitations of existing solutions. This IHK combines powered hip and microprocessor controlled knee joints into one structure, with shared electronics, sensors, and batteries. The unit is also adjustable to the user leg length by a prosthetist. ISO-10328 standard mechanical testing demonstrated acceptable structural safety and rigidity. Successful functional testing involved three able-bodied participants walking with the IHK in a hip prosthesis simulator. Hip and knee joint angles and pelvic tilt angles were recorded, gait characteristics were analyzed using video recordings. Testing showed that the participants were able to walk using the IHK, and data showed that participants used different walking strategies. Points of improvement were identified for future development of the thigh unit, including completion of a synergistic gait control system, improved battery holding mechanism, and amputee user testing.
|
4 |
Biomechanical adaptations involved in ramp descent: Impact of microprocessor-controlled ankle-foot prothesis. Kinetic and kinematic responses to using microprocessor-controlled ankle-foot prosthesis in unilateral trans-tibial amputees during ramp descentStruckovs, Vasilijs January 2017 (has links)
Ramp descent is a demanding task for trans-tibial amputees, due to the difficulty in controlling body weight progression over the prosthetic foot. A deeper understanding of the impact of foot function on ramp descent biomechanics is required to make recommendations for rehabilitation programs and prosthetic developments for lower-limb amputees. The thesis aim was to determine the biomechanical adaptations made by active unilateral trans-tibial amputees (TT) using a microprocessor-controlled ankle-foot prosthesis in active (MC-AF) compared to non-active mode (nonMC-AF) or elastically articulated ankle-foot device. A secondary aim was to determine the biomechanical adaptation made by able-bodied individuals when ankle motion was restricted using a custom made ankle-foot-orthosis and provide further insight into the importance of ankle dynamics when walking on ramps. Kinetic and kinematic data were recorded from nine TT’s and twenty able-bodied individuals. Able-bodied participants, ankle restriction, led to an increase in involved limb loading response knee flexion that is accompanied by the increased knee power generation during the single-limb-support phase that correlates to TTs results. TT’s use of an MC-AF reduced the ‘plantar-flexion’ resistance following foot contact allowing foot-flat to be attained more quickly. Followed by the increased ‘dorsi-flexion’ resistance which reduced the shank/pylon rotation velocity over the support foot, leading to an increase in negative work done by the prosthesis. These findings highlight the importance of having controlled ankle motion in ramp descent. Use of an MC-AF can provide TTs controlled motion for descending ramps and hence provide biomechanical benefits over using more conventional types of ankle-foot devices. / Engineering and Physical Science Research Council (EPSRC) via Doctoral Training Account (DTA) (EP/P504821/1)
Chas. A. Blatchford and Sons Ltd., Basingstoke, UK provided the prosthetic hardware, prosthetist support, and facilitated the attendance of the TT participants for this study
|
Page generated in 0.0363 seconds