• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phenology and Management of Annual Bluegrass Weevil on Virginia Golf Courses

Daly, Emeline Hope 14 July 2021 (has links)
Annual bluegrass weevil (Listronotus maculicollis Kirby) (Coleoptera: Curculionidae) (ABW) is a major pest of annual bluegrass (Poa annua L.) and creeping bentgrass (Agrostis stolonifera L.) on golf courses in the northeastern United States. The asynchronous life cycle makes managing ABW difficult, putting emphasis on scouting to achieve accurate insecticide timing and acceptable control. Little is known about the biology and management of ABW in Virginia's more temperate climate. Reported cases of ABW resistance to pyrethroids (IRAC Group 3) continues to grow in the northeast, yet no pyrethroid-resistance cases have been reported in Virginia outside of the metropolitan Washington, D.C. For this thesis, I confirmed the widespread distribution of ABW across Virginia with a survey of golf course superintendents. Two golf courses in southwestern Virginia were monitored weekly during the 2019 and 2020 growing seasons to determine the seasonal biology of ABW within this region. These data suggest that overwintering ABW emerge much earlier than described in the northeast, with adult weevil activity beginning in late February or early March. I observed three complete ABW generations, with a potential fourth generation. Soil plugs from the same two golf courses were used to compare the salt floatation and Berlese-Tullgren funnel methods of larval extraction. The methods were highly correlated (R2 = 0.7856), suggesting either method is appropriate for ABW larval extraction. Bioassays conducted on adult ABW from the same two golf courses showed that field rate concentrations of the pyrethroid bifenthrin showed variable mortality ranging from 20% to 80% suggesting the presence of resistance genes in the population. A 100-fold rate of bifenthrin resulted in 100% mortality of ABW, however. Because cross-resistance has been reported among northeastern ABW populations, the common insecticide active ingredients chlorpyrifos (IRAC Group 1B: Organophosphate), trichlorfon (IRAC Group 1B: Organophosphate), λ-cyhalothrin (IRAC Group 3: Pyrethroid), α-cypermethrin (IRAC Group 3: Pyrethroid), imidacloprid (IRAC Group 4A: Neonicotinoid), and spinosad (IRAC Group 5: Spinosyn), were tested on ABW adults. In another bioassay, two organophosphates, trichlorfon and chlorpyrifos, resulted in significantly higher ABW mortality rates than all other labeled insecticides (P < 0.0001). Two other larvicides, spinosad and α-cypermethrin, also exhibited adult control, an important factor to consider for ABW management and preventing pyrethroid-resistance. These results provide valuable insight into the seasonal biology and management of ABW in Virginia and direction for further investigation into these populations. / Master of Science in Life Sciences / Annual bluegrass weevil (Listronotus maculicollis Kirby) (ABW) is a tiny, but damaging insect pest of cool-season golf course turfgrasses in the northeastern United States. As pest populations have spread southward, ABW has become an emerging pest in Virginia. The objectives of this thesis were to 1) determine the geographic distribution and seasonal biology of ABW in Virginia, 2) compare two methods for extracting ABW larvae from turf cores in order to estimate larval densities, and 3) to assess the susceptibility of ABW to various insecticides commonly used by golf course superintendents. A survey of golf course superintendents in 2019 revealed widespread prevalence of ABW across Virginia, particularly in areas growing predominantly cool-season turfgrasses. Two golf courses in southwestern Virginia were monitored weekly during the growing seasons of 2019 and 2020 to determine the seasonal biology of ABW. Data suggest that overwintering ABW emerge much earlier than reported in the northeast, with adult weevil activity beginning in late February or early March compared to April in the northeast. In addition, I detected three complete ABW generations, with a possible fourth generation occurring. Soil plugs from two golf courses were used to compare a heat extraction method using a Berlese-Tullgren funnel with the traditional salt float method for extraction of ABW larvae. The two methods extracted similar numbers of ABW larvae suggesting that either method is appropriate for ABW larval extraction. Adult ABW from the same two golf courses were collected and subjected to the pyrethroid insecticide bifenthrin at 0.128 kg ai ha-1 (field application rate), 1.28 kg ai ha-1 (10-fold rate), 12.8 kg ai ha-1 (100-fold rate), along with a water control. Results indicated that the field application rate of bifenthrin killed > 50% but <90% of ABW adults, suggesting that some resistance may be present in the population. A concentration of 100-fold bifenthrin field rate killed 100% of tested individuals, suggesting that widescale field resistance to pyrethroids is likely not present. Because cross-resistance has been reported among northeastern ABW populations, the common insecticide active ingredients chlorpyrifos (IRAC Group 1B: Organophosphate), trichlorfon (IRAC Group 1B: Organophosphate), λ-cyhalothrin (IRAC Group 3: Pyrethroid), α-cypermethrin (IRAC Group 3: Pyrethroid), imidacloprid (IRAC Group 4A: Neonicotinoid), and spinosad (IRAC Group 5: Spinosyn), were tested on ABW adults from the same two golf courses. Two organophosphates, trichlorfon, a larvicide, and chlorpyrifos resulted in significantly higher ABW mortality rates than all other active ingredients (P < 0.0001). Two other larvicides, spinosad and α-cypermethrin, also exhibited adult control, an important factor to consider when attempting to manage ABW and preventing resistance to pyrethroids. Our results provide valuable insight into the seasonal biology and management of ABW in Virginia and direction for further investigation into these populations.
2

Developing remote sensing approaches for integrated pest and pollinator management in turfgrass

Bradley, Shannon Grace 06 September 2023 (has links)
Golf courses can expand hundreds of acres, making scouting for both pests and beneficial insect populations a time-consuming task. Scouting for insects is labor-intensive, potentially damaging, but is an integral part of an integrated pest and pollinator management (IPPM) plan. Virginia golf courses are currently using remote sensing and light reflectance to detect non-insect pests in turfgrass. This thesis aims to develop remote sensing and light reflectance methods to aid in a turfgrass IPPM plan, to document the phenology of ABW weevil (Listronotus maculicollis Kirby, Coleoptera: Curculionidae, ABW), and to catalogue pollinator-friendly out-of-play areas. Light reflectance, the measurement of the amount of light reflected, of plants can be used as a proxy for the health of a plant. The light reflectance of turfgrass affected by ABW stress and plants in the out-of-play areas of golf courses was collected proximally and remotely, using a backpack spectrometer and an unmanned aerial vehicle (UAV), respectively. Mathematical light reflectance indices were applied and compared to insect populations in both areas to determine the correlation. The Normalized Difference Vegetation Index (NDVI), which uses red and near-infrared wavelengths to indicate stress, was found to highlight ABW stressed turfgrass. The Structure Intensive Vegetation Pigment Index (SIPI), which uses red and green wavelengths to highlight flowering plants, was found to highlight potential pollinator- friendly habitats in out-of-play areas. When applied to flights, NDVI could help in the targeted application of insecticides to combat the annual bluegrass weevil, therefore reducing their presence in the environment. The use of SIPI could highlight potential pollinator friendly habitats and therefore assist superintendents in the development of their IPPM plan. / Master of Science in Life Sciences / Scouting, such as completing visual monitoring or taking soil core samples, is an important part in the development of an integrated pest and pollinator management (IPPM) plan for Virginia golf courses; an IPPM plan focuses on control of a pest, while considering the needs of pollinators. The size of golf courses makes scouting for insect pests and beneficial insects a time-consuming task. Golf courses are currently using remote sensing, the use of drones in combination with other technology, to scout for other pests or disease. Light reflectance, the measurement of the amount of light reflected, is often used in combination with remote sensing as a proxy for the health of plants. This thesis developed remote sensing and light reflectance techniques not only to detect a common turfgrass pest, the annual bluegrass weevil (Listronotus maculicollis Kirby, Coleoptera: Curculionidae, ABW), but to also predict the presence of potential pollinator habitats in the out-of-play areas of Virginia golf courses. Instruments such as a spectrometer and a drone were used to collect light reflectance at the ground level and aerially, respectively. Ground data was collected through soap water flushes to detect adult ABW, and visual monitoring of potentially pollinating bees, beetles, butterflies, and flies. The light reflectance and ground data were compared using mathematical indices to determine if there was a relationship between the presence of insects and a particular index. Indices could be applied to drone flights that golf course superintendents are already performing, and they can use this information to highlight potential areas of insect presence. This will help them to take care not to apply insecticides in areas with pollinators or to only apply necessary insecticides where there is likely a presence of ABW. This will reduce the labor, other costs, and the environmental impact of insecticides.

Page generated in 0.0499 seconds