• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 24
  • 12
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 49
  • 45
  • 41
  • 39
  • 24
  • 21
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Studies of extended area tin dioxide anodes

Lipp, Ludwig January 1996 (has links)
No description available.
22

The development of a continuous anode for a direct carbon fuel cell

Birse, Frank A. January 2018 (has links)
Currently, electrical generation from solid carbon (biomass, coal) is conducted at low efficiency (~35 %) compared to other power sources. The Direct Carbon Fuel Cell (DCFC) is a technology capable of electro-oxidising elemental carbon for the production of electricity at a projected 80 % efficiency. This improvement has significant benefits for the reduction of greenhouse gas emissions. The research status of the DCFC technology is in early stages, with no practical continuous or stacked designs having been established. The sole concept for a continuous anode has been based on particulate carbons, these designs suffer from poor carbon polarisation and a lack of fuel versatility. This work focusses on the development of a continuous, monolithic anode for a direct carbon fuel cell. A monolithic anode has the benefit of acting both as fuel and current collector. This concept achieves improved fuel polarisation and also avoids the pumping of hot molten carbonate mixtures, and the corrosion issues associated with a separate metallic anode. In this regard, a parallel was drawn with the aluminium production industry in the Söderberg electrode. This technology allows for the continuous pyrolysis and extrusion of carbonaceous mixtures into solid carbon anodes. This project simulated the process of Söderberg electrodes through isostatic compression of pine sawdust in a novel, bespoke heated press, designed and built in-house. This apparatus also allowed for the live monitoring of resistance during heating. The formation factors of pyrolysis temperature, applied load and particle size were studied. The anodes formed in these processes were subjected to various characterisation methods and a practicality assessment made. The electrochemical properties of each anode were also assessed in a novel, bespoke DCFC apparatus, again designed and built in-house. It was found that the anodes formed were of a suitable BET surface area (300 – 450 m2 g-1), possessed high microporosity and were of a tensile strength comparable to industrial Söderberg electrodes. Electrochemical tests found the anodes to produce OCV values near the theoretical value for carbon electro-oxidation (1.01 V). A maximal power of 7.87 mW cm-2, at 0.58 V was achieved using an anode formed at 620°C, 12.3 N applied load and with a mixed particle size.
23

Investigation of anode structure in a rising-sun magnetron

January 1949 (has links)
R.R. Moats. / "May 18, 1949." / Bibliography: p. 23. / Army Signal Corps Contract No. W36-039-sc-32037 Project No. 102B Dept. of the Army Project No. 3-99-10-022
24

Interaction of nickel-based SOFC anodes with trace contaminants from coal-derived synthesis gas

Hackett, Gregory A. January 2009 (has links)
Thesis (Ph. D.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xii, 122 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 115-122).
25

Investigations into the interactions between sulfur and anodes for solid oxide fuel cells

Cheng, Zhe. January 2008 (has links)
Thesis (Ph. D.)--Materials Science and Engineering, Georgia Institute of Technology, 2008. / Committee Chair: Liu, Meilin; Committee Member: Agrawal, Pradeep; Committee Member: Carter, W. Brent; Committee Member: Singh, Preet; Committee Member: Speyer, Robert; Committee Member: Summers, Christopher.
26

Nanostructured materials for electrodes in lithium-ion batteries

Ng, See How. January 2007 (has links)
Thesis (Ph.D.)--University of Wollongong, 2007. / Typescript. Includes bibliographical references: leaf 230-232.
27

A novel fuel cell anode catalyst, perovskite LSCF compared in a fuel cell anode and tubular reactor testing /

Fisher, James C., January 2006 (has links)
Thesis (M.S.)--University of Akron, Dept. of Chemical Engineering, 2006. / "December, 2006." Title from electronic thesis title page (viewed 12/31/2008) Advisor, Steven S. C. Chuang; Faculty Readers, George Chase, Lu-Kwang Ju ; Department Chair, Lu-Kwang Ju; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
28

Étude électrochimique d'anodes en métaux et oxydes divisés pour le stockage de l'énergie solaire.

Guerrero Cazares, Hernando Rodolfo, January 1900 (has links)
Th. doct.-ing.--Sci. et tech. des procédés chim.--Toulouse 3, 1980. N°: 702.
29

Effet de l’empilement des anodes de carbone pendant la cuisson sur leur densification et sur leur résistivité électrique

Barry, Thierno Saidou 06 February 2021 (has links)
De nos jours, le seul procédé industriellement applicable pour la production de l’aluminium est connu sous le nom du procédé de Hall-Héroult. Le procédé utilise essentiellement des matériaux à base de carbone comme électrodes (anode et cathode). La productivité et l’efficacité énergétique du procédé sont étroitement liées à la qualité de l’anode (uniformité et stabilité des propriétés requises). Dans ce projet, nous avons étudié différents paramètres pouvant influencer l’uniformité des propriétés finales des anodes lors de leur cuisson principalement par la détermination de la résistivité électrique. Le processus de cuisson est la dernière étape du procédé de fabrication des anodes. Il s’agit d’une étape très critique, car c’est ici que les anodes subissent les plus importantes transformations microstructurales leur conférant les propriétés requises à leur utilisation dans le procédé de Hall-Héroult. Pendant la cuisson, les anodes sont empilées dans un four et cuites suivant des profils de température prédéfinis. Cela entraine la génération de contraintes mécaniques dans les anodes, causées par l’empilement, combinées aux transformations thermochimiques, causées par le processus de cuisson. La conséquence de ce phénomène peut mener à une anisotropie au niveau des propriétés des anodes. L’hypothèse est que lors de la cuisson, les anodes supérieures peuvent générer des pressions externes sur les anodes inférieures, provoquant ainsi le réarrangement des particules de coke dans la structure interne de l’anode. Ce changement pourrait mener à la réduction de la distance entre les particules affectant possiblement la résistivité électrique. Dans ce travail, la variation de la résistivité électrique d’une série d'anodes industrielles en fonction de leur position dans les fours de cuisson a été examinée dans un premier temps. Ensuite, à travers des travaux expérimentaux, menés en laboratoire, des échantillons d'anodes ont été fabriqués et cuits sous différentes pressions externes. Enfin, leur résistivité électrique a été déterminée afin d’établir une relation entre la force mécanique appliquée et la résistivité électrique. / Nowadays, the only industrially applicable process to produce aluminum is known as the Hall-Héroult process. The process essentially uses carbon-based materials as electrodes (anodes and cathodes). The productivity and energy efficiency of the process is closely linked to the quality of the anodes (uniformity and properties variations). In this project, we studied different parameters that could influence the uniformity of the anode final properties by mainly determining their electrical resistivity. The baking process is the last step in the anode manufacturing process. This is a very critical step while the anodes undergo the most significant microstructural transformations giving them the properties required for their use in the Hall-Héroult process. During baking, the anodes are stacked in the furnace and baked according to predefined temperature profiles leading to the generation of mechanical stresses, due to stacking, combined with thermochemical transformations, due to the baking process. The consequence of this phenomena can lead to anisotropy in terms of anode internal properties. The hypothesis is that during baking, the upper anodes can exert an external pressure on the lower anodes, thus causing the rearrangement of the coke particles in the internal structure of the anode. This change could lead to a reduction in the distance between particles, possibly affecting the electrical resistivity. In this work, the variations in the electrical resistivity of a series of industrial anodes as a function of their position in the baking furnace were first examined. Then, through experimental work carried out in the laboratory, anode samples were fabricated and baked under different external pressures. Finally, their electrical resistivity was determined to establish a relationship between the applied mechanical force and the electrical resistivity.
30

Mn control in zinc electrowinning process by electrochemical means using Pb-Ag anode

Yaghoubi, Mohsen 26 May 2021 (has links)
Les conditions optimales pour l'élimination du dioxyde de manganèse (MnO2) en utilisant une anode Pb-0.7 pd% d'Ag ont été étudiées en utilisant des électrolytes simulant les conditions pour le fonctionnement de purification et d'extraction électrolytique. L'effet de la densité, de la température, du pH et de la concentration de manganèse sur l'efficacité du courant de formation de MnO2 et les tensions anodiques ont été étudiés à l'aide d'essais galvanostatiques. La spectroscopie d'émission atomique par plasma micro-ondes (MP-AES) a été utilisée pour mesurer la concentration d'ions manganèse dans les électrolytes. Des essais de voltamétrie linéaire à balayage (LSV) ont été menés pour étudier l'effet de la température et de la concentrations de Mn2+ sur la réaction de dégagement d'oxygène (OER) et la formation de MnO2. La microscopie électronique à balayage avec spectroscopie à dispersion d'énergie (SEM-EDS), la diffraction des rayons X (XRD) et la fluorescence X (XRF) ont été utilisées pour la caractérisation de surface et les compositions chimiques. Les résultats ont montrés que les conditions d'extraction électrolytiques fonctionnels pour éliminer le MnO2 consiste à utiliser la Pb-0.7 pd% d'Ag. L'efficacité de courant (CE) la plus élevée de l'élimination du manganèse était de 21 %, ce qui était obtenu dans l'électrolyte à pH 1 et à une densité de courant de 125 A m-2 à 40 °C après 2 h d'électrolyse. La valeur d'efficacité a été augmentée à 28 % à l'aide d'anodes neuves remplacées toutes les 30 minutes. / The optimum conditions for manganese dioxide (MnO2) removal using Pb-0.7 wt.% Ag anode have been investigated using electrolytes simulating the purification and electrowinning operating conditions. The effect of current density, temperature, pH and manganese concentration on the current efficiency of MnO2 formation and anodic voltages have been studied using galvanostatic tests. Microwave plasma atomic emission spectroscopy (MP-AES) has been used to measure the concentration of manganese ions in the electrolytes. Linear sweep voltammetry (LSV) tests were conducted to study the effect of temperature and Mn2+ concentrations on oxygen evolution reaction (OER) and MnO2 formation. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD) and X-ray fluorescence (XRF) were used to study the surface characterizations and chemical compositions. The results revealed that the operating electrowinning conditions are more appropriate for MnO2 removal on Pb-0.7 wt.% Ag surface. The highest current efficiency (CE) of manganese removal was 21 % which obtained in the electrowinning electrolyte at pH 1 at 125 A m-2 at 40 °C after 2 h of electrolysis. The current efficiency value was increased to 28 % using fresh anodes replaced each 30 minutes.

Page generated in 0.0247 seconds