• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical Application of Anodic Aluminum Oxide

Chien, Wei-han 29 July 2008 (has links)
Abstract The AAO membrane with nanopore arrays were fabricated by anodizing highly pure aluminum foils (99.9995%) in electrolyte under steady voltage. Pore diameter can be controlled by different anodic voltage(from 30 to 50 V) and electrolyte, on the other hand, thickness is proportioned to anodizing time , and interpore could follow this rule(a = 15.4+2.63¡Ñv) , and minimum radius of pore could reach 15nm . The XRD spectra of AAO without and with annealing, both showed the diffraction peaks of (311)¡B(400)¡B(440), corresponding to the £^-Al2O3 phase . Before fabricating AAO, we would polish under low temperature and then clean alumina foil in order to reduce surface roughness that is good for better order and regular. Through the use of porous anodic alumina masks, Au nanodot arrays deposited on Si by E-gun with AAO mask. Subsequently, the AAO mask was removed by H3PO4. Under the same procedure, we can fabricate 80nm of the diameter of pore and apply this mask on wafer of laser constructure . Because of regular hexagonal pore array, we may get the photonic crystal effect. During PL experiment, we got the result that AAO could increase light extraction of quantum dot from C237 wafer and controlled emission peak from C238 and C196 wafer and position of peak could shift to 1140nm. We hope nanodot array on wafer of laser structure could control emission peak.
2

SYNTHESIS AND CHARACTERIZATION OF P-TYPE COPPER INDIUM DISELENIDE (CIS) NANOWIRES EMBEDDED IN POROUS ALUMINA TEMPLATES

Moturu, Sri Harsha 01 January 2011 (has links)
This work focuses on a simple template assisted approach for fabricating I-III-VI semiconductor nanowire arrays. Vertically aligned nanowires of p-CIS of controllable diameter and thickness are electrodeposited, from an acidic electrolyte solution, inside porous aluminum templates using a three electrode set up with saturated calomel electrode as the reference. AAO template over ITO-glass was used as starting template for the device fabrication. The deposited CIS is annealed at different temperatures in a reducing environment (95% Ar+ 5% H2) for 30 minutes. X-ray diffraction of the nanowires showed nanocrystalline cubic phase structures with a strong orientation in the <112> direction. The effective bandgap of the deposited CIS nanowires determined using the Near Infrared (NIR) Spectrometer was found to be 1.07eV. The type of CIS electrodeposited inside the porous alumina template is determined to be p-type from the Schottky diode obtained with ITO-CIS-Au structure. Schottky diodes were characterized and analyzed at room temperature.
3

SCHOTTKY DIODES ON COPPER PHTHALOCYANINE NANOWIRE ARRAYS EMBEDDED IN POROUS ALUMINA TEMPLATES

Chintakula, Goutam 01 January 2008 (has links)
Vertically aligned nanowire arrays of copper phthalocyanine (CuPc) and CuPc-Al Schottky diodes, of controllable diameter and length were fabricated by cathodic electrodeposition of CuPc into anodized alumina (AAO) templates, followed by annealing at 300 ºC in Argon. AAO over Aluminum tape and that over ITO-glass were both used as starting templates for the device fabrication. Depending on the dimensions of the starting AAO template, diameters of CuPc nanowires ranged from 30 nm to 40 nm and the lengths ranged from 500 nm to 1 μm. The temperature dependence of the phase and the absorption spectrum of the nanowires are reported. The electrodeposited nanowires (as prepared) had the preferred crystallite orientation of the α-phase. ITO formed the ohmic contact and Schottky contacts were formed between CuPc and aluminum. Insertion of a thin layer of PEDOT:PSS between CuPc nanowires and the ITO electrode improved the contact and reduced the series resistance by an order of magnitude. Schottky diodes were characterized and analyzed at room temperature and at cryogenic temperatures.
4

SYNTHESIS AND CHARACTERIZATION OF SCHOTTKY DIODES ON N-TYPE CdTe NANOWIRES EMBEDDED IN POROUS ALUMINA TEMPLATES

Yanamanagandla, Srikanth 01 January 2008 (has links)
This work focuses on the growth of vertically aligned CdTe nanowire arrays of controllable diameter and length using cathodic electro deposition in anodized alumina templates. This step was followed by annealing at 250° C in a reducing environment (95% Ar + 5% H2). AAO template over ITO-glass was used as starting template for the device fabrication. The deposited nanowires showed nanocrystalline cubic phase structures with a strong preference in [111] direction. First gold (Au) was deposited into AAO using cathodic electro deposition. This was followed by CdTe deposition into the pore. Gold was deposited first as it aids the growth of CdTe inside AAO and it makes Schottky contact with the deposited n type CdTe. CdTe was determined to be n-type from the fact that back to back diode was obtained with Au-CdTe-Au test structure. Aluminum (Al) was sputtered on the top to make the ohmic contact to the n type CdTe deposited in AAO. Analysis of Schottky diodes yielded a diode ideality factor of 10.03 under dark and 10.08 under light and reverse saturation current density of 34.9μA/cm2 under dark and 39.7μA/cm2 under light.

Page generated in 0.0364 seconds