Spelling suggestions: "subject:"anodic ctching"" "subject:"anodic crutching""
1 |
Fabrication and Characterization of a Palladium/Porous Silicon LayerLui, Nicholas Hong 01 September 2013 (has links)
When porous silicon is plated with a catalytic metal, the two materials can act together as a single entity whose electrical properties are sensitive to its environment – the sensing component of an electrochemical gas sensor. Etching pores into silicon is an electrochemical process; and which type of doped silicon used is one of its key parameters. For nearly all reported porous silicon gas sensors, the silicon has been of the p-doped variety – because p-doped porous etching is better understood and the layers that result from it are more predictable – despite n-doped silicon having potentially significant benefits in ease of fabrication and being more conducive to plating by a catalyst. This experiment is an attempt at creating a palladium plated n-doped porous silicon layer, and an examination into what differentiates this fabrication process and the layers that result from the traditional p-doped type.
The porous layers to be plated are to be the same and would ideally have properties that are a close approximation to what a functional gas sensor would require. This experiment defined a process that fabricated this “ideal” layer out of N-type, , double polished silicon wafers with a resistance of 20 Ω cm. The wafers were subjected to the anodic etching method with an HF/ethanol mixture as the electrolyte; and only two (of among many) fabrication parameters were varied: HF concentration of the electrolyte and total etching time. We find that a concentration of 12% HF (by volume) and an etching time of 6 hours result in layers most appropriate to carry into plating. The anodization current density is 15 mA cm-2. Deposition of the catalyst, palladium, is done using the electroless method by immersing the porous layer in a .001M PdCl2 aqueous bath.
Characterization of this Pd/Porous Silicon layer was done by measuring resistivity by four point probe and imaging through Scanning Electron Microscopy. It was found that layers of a maximum average of 63 ± 6% porosity were created using our fabrication method. There is evidence of palladium deposition, but it is spotty and irregular and is of no improvement despite the n-doping wafer makeup. Resistivity in well-plated regions was measured to be 7-10 Ωcm, while resistivity in regions not well-plated was measured to be 70-140 Ω cm. This is comparable to previous literature values, indicating n-silicon porous silicon can be fabricated and still have potential as a catalytic layer, should metal deposition methods improve.
|
Page generated in 0.0421 seconds