Spelling suggestions: "subject:"anomaly aggregation"" "subject:"unomaly aggregation""
1 |
Détection et agrégation d'anomalies dans les données issues des capteurs placés dans des smartphones / Detection and aggregation of anomalies in data from smartphone sensorsNguyen, Van Khang 17 December 2019 (has links)
Les réseaux sans fils et mobiles se sont énormément développés au cours de ces dernières années. Loin d'être réservés aux pays industrialisés, ces réseaux nécessitant une infrastructure fixe limitée se sont aussi imposés dans les pays émergents et les pays en voie de développement. En effet, avec un investissement structurel relativement très faible en comparaison de celui nécessaire à l'implantation d'un réseau filaire, ces réseaux permettent aux opérateurs d'offrir une couverture du territoire très large, avec un coût d'accès au réseau (prix du téléphone et des communications) tout à fait acceptable pour les utilisateurs. Aussi, il n'est pas surprenant qu'aujourd'hui, dans la majorité des pays, le nombre de téléphones sans fil soit largement supérieur à celui des téléphones fixes. Ce grand nombre de terminaux disséminé sur l'ensemble de la planète est un réservoir inestimable d'information dont une infime partie seulement est aujourd'hui exploitée. En effet, en combinant la position d'un mobile et sa vitesse de déplacement, il devient possible d'en déduire la qualité des routes ou du trafic routier. Dans un autre registre, en intégrant un thermomètre et/ou un hygromètre dans chaque terminal, ce qui à grande échelle impliquerait un coût unitaire dérisoire, ces terminaux pourraient servir de relai pour une météo locale plus fiable. Dans ce contexte, l'objectif de cette thèse consiste à étudier et analyser les opportunités offertes par l'utilisation des données issues des terminaux mobiles, de proposer des solutions originales pour le traitement de ces grands masses de données, en insistant sur les optimisations (fusion, agrégation, etc.) pouvant être réalisées de manière intermédiaire dans le cadre de leur transport vers les(s) centre(s) de stockage et de traitement, et éventuellement d'identifier les données non disponibles aujourd'hui sur ces terminaux mais qui pourraient avoir un impact fort dans les années à venir. Un prototype présentant un exemple typique d'utilisation permettra de valider les différentes approches. / Mobile and wireless networks have developed enormously over the recent years. Far from being restricted to industrialized countries, these networks which require a limited fixed infrastructure, have also imposed in emerging countries and developing countries. Indeed, with a relatively low structural investment as compared to that required for the implementation of a wired network, these networks enable operators to offer a wide coverage of the territory with a network access cost (price of devices and communications) quite acceptable to users. Also, it is not surprising that today, in most countries, the number of wireless phones is much higher than landlines. This large number of terminals scattered across the planet is an invaluable reservoir of information that only a tiny fraction is exploited today. Indeed, by combining the mobile position and movement speed, it becomes possible to infer the quality of roads or road traffic. On another level, incorporating a thermometer and / or hygrometer in each terminal, which would involve a ridiculous large-scale unit cost, these terminals could serve as a relay for more reliable local weather. In this context, the objective of this thesis is to study and analyze the opportunities offered by the use of data from mobile devices to offer original solutions for the treatment of these big data, emphasizing on optimizations (fusion, aggregation, etc.) that can be performed as an intermediate when transferred to center(s) for storage and processing, and possibly identify data which are not available now on these terminals but could have a strong impact in the coming years. A prototype including a typical sample application will validate the different approaches.
|
Page generated in 0.0831 seconds