• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Use of Entropy for Feature Selection with Intrusion Detection System Parameters

Acker, Frank 01 January 2015 (has links)
The metric of entropy provides a measure about the randomness of data and a measure of information gained by comparing different attributes. Intrusion detection systems can collect very large amounts of data, which are not necessarily manageable by manual means. Collected intrusion detection data often contains redundant, duplicate, and irrelevant entries, which makes analysis computationally intensive likely leading to unreliable results. Reducing the data to what is relevant and pertinent to the analysis requires the use of data mining techniques and statistics. Identifying patterns in the data is part of analysis for intrusion detections in which the patterns are categorized as normal or anomalous. Anomalous data needs to be further characterized to determine if representative attacks to the network are in progress. Often time subtleties in the data may be too muted to identify certain types of attacks. Many statistics including entropy are used in a number of analysis techniques for identifying attacks, but these analyzes can be improved upon. This research expands the use of Approximate entropy and Sample entropy for feature selection and attack analysis to identify specific types of subtle attacks to network systems. Through enhanced analysis techniques using entropy, the granularity of feature selection and attack identification is improved.
2

Geomagnetic Compensation for Low-Cost Crash Avoidance Project

Torres, John C 01 April 2011 (has links)
The goal of this work was to compensate for the effects of the Earth’s magnetic field in a vector field magnetic sensor. The magnetic sensor is a part of a low-cost crash avoidance system by Stephane Roussel where the magnetic sensor was used to detect cars passing when it was mounted to a test vehicle. However, the magnetic sensor’s output voltage varied when it changed orientation with respect to the Earth’s magnetic field. This limited the previous work to only analyze detection rates when the test vehicle travelled a single heading. Since one of the goals of this system is to be low-cost, the proposed solution for geomagnetic compensation will only use a single magnetic sensor and a consumer-grade GPS. Other solutions exist for geomagnetic compensation but use extra sensors and can become costly. In order to progress the development of this project into a commercial project, three separate geomagnetic compensation algorithms and a calibration procedure were developed. The calibration procedure compensated for the local magnetic field when the magnetic sensor was mounted to the test vehicle and allowed for consistent magnetic sensor voltage output regardless of the type of test vehicle. The first algorithm, Compensation Scheme 1 (CS1), characterized the local geomagnetic field with a mathematical function from field calibration data. The GPS heading was used as the input and the output is the voltage level of the Earth’s magnetic field. The second algorithm, Compensation Scheme 1.5, used a mathematical model of the Earth’s magnetic field using the International Geomagnetic Reference Field. An algorithm was developed to take GPS coordinates as an input and output the voltage contributed by the mathematical representation of the Earth’s magnetic field. The output voltages from CS1 and CS1.5 were subtracted from the calibrated magnetic sensor data. The third algorithm, Compensation Scheme 2 (CS2), used a high pass filter to compensate for changes of orientation of the magnetic sensor. All three algorithms were successful in compensating for the geomagnetic field and vehicle detection in multiple car headings was possible. Since the goal of the magnetic sensor is to detect vehicles, vehicle detection rates were used to evaluate the effectiveness of the algorithms. The individual algorithms had limitations when used to detect passing cars. Through testing, it was found that CS1 and CS1.5 algorithms were suitable to detect vehicles while stopped in traffic while the CS2 algorithm was suitable vehicle detection while the test vehicle is moving. In order to compensate for the limitations of the individual algorithms, a fused algorithm was developed that used a combination of CS1 and CS2 or CS1.5 and CS2. The vehicle speed was used in order to determine which algorithm to use in order to detect cars. Although the goal of this project is not vehicle detection, the rate of successful vehicle detection was used in order to evaluate the algorithms. The evaluation of the fused algorithm demonstrated the value of using CS1 and CS1.5 to detect vehicles when stopped in traffic, which CS2 algorithm cannot do. For a study conducted in traffic, using the fused algorithm increased vehicle detection rates by 51%-62% from using the CS2 algorithm alone. Since this work successfully compensated for geomagnetic effects of the magnetic sensor, the low-cost crash avoidance system can be further developed since it is no longer limited to driving in a single direction. Other projects that experience unwanted geomagnetic effects in their projects can also implement the knowledge and solutions used in this work.

Page generated in 0.1106 seconds