• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 11
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 21
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Impact of irrigated rice culture on the production of Anopheles mosquitos (Diptera:Culicidae) in the Niono region, Mali

Fortier, Sophie. January 2001 (has links)
The study assessed the impact of rice paddy water management practices and related environmental conditions that prevail in Niono, Mali, on the size of larval populations of Anopheles gambiae s.l., a major malaria vector. The longer the period of uninterrupted flooding, the greater was the larval population size. As the density of aquatic weeds increased, the size of the mosquito larval population declined, whereas the presence of rice plants enhanced the size of mosquito larval populations. Numbers of mosquito larvae initially increased as rice plant density rose, but then decreased marginally as densities reached their peak. These results confirm that water management plays a major role in the production of mosquito larvae. Nevertheless, comparison with studies conducted in other areas suggest that the impact of water management on mosquitoes varies regionally. In the Niono region, controlled irrigation and drainage should favour the reduction of Anopheles mosquito larval populations.
12

Epithelial and cellular innate immune responses of Anopheline mosquitoes to Plasmodium parasites

Pinto, Sofia B. January 2007 (has links)
Heidelberg, Univ., Diss., 2007.
13

Análise in silico e polimorfismo genético das glutationa stransferases da classe epsilon de anopheles gambiae (diptera: culicidae): possíveis implicações na resistência a inseticidas químicos.

Maia, Rafael Trindade 31 January 2013 (has links)
Submitted by Milena Dias (milena.dias@ufpe.br) on 2015-03-11T17:49:05Z No. of bitstreams: 2 Tese Rafael Trindade Maia.pdf: 4595214 bytes, checksum: 9e51b91025a00458c05287160877d452 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-11T17:49:05Z (GMT). No. of bitstreams: 2 Tese Rafael Trindade Maia.pdf: 4595214 bytes, checksum: 9e51b91025a00458c05287160877d452 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013 / O mosquito Anopheles gambiae (Diptera: Culicidae) é considerado o principal vetor do Plasmodium, o agente etiológico da malária, a doença parasitária que mais leva ao óbito em todo o mundo. O uso intensivo de alguns inseticidas químicos, entre os quais o DDT, direcionados para o controle desse vetor, levou à seleção de linhagens resistentes de An. gambiae. Desta forma, os mecanismos de resistência aos inseticidas vêm sendo amplamente estudados com o intuito de desenvolver novas estratégias de controle populacional do vetor. As glutationa s-transferases (GSTs) são enzimas de detoxificação celular que desempenham um importante papel biológico no metabolismo de xenobióticos através da conjugação da glutationa reduzida (GSH), tornandoos mais solúveis e facilmente excretados da célula. As GSTs da classe epsilon em An. gambiae (AgGSTE) apresentam atividade anti-DDT, especialmente a AgGSTE2, cuja estrutura encontra-se disponível no PDB. Também já foi demonstrado que a enzima AgGSTE5, cuja estrutura tridimensional ainda não foi elucidada, apresentou super expressão em presença do DDT. Assim, o objetivo do presente trabalho foi construir e validar um modelo tridimensional para elicidação da estrutura da AgGSTE5 através da modelagem comparativa e simular a dinâmica molecular da AgGSTE2 e AgGSTE5 e de uma isoforma mutante (AgGSTE2mut). Nas simulações de Dinâmica Molecular (DM) foram feitas por um período de 50 nanossegundos com e sem o ligante (GSH). Após a dinâmica, as três enzimas foram submetidas ao docking molecular contra os compostos DDT, CDNB, carbaril, malation e cipermetrina. Também foi analisado o polimorfismo genético e a taxa de mutação para os genes AgGSTE2 e AgGSTE5. A análise da seqüência dos genes apontou seleção purificadora para o AgGSTE2 e seleção positiva para o AgGSTE5 em populações de sete países da África. Os resultados demonstraram que as proteínas têm dinâmicas diferentes e interagem com os substratos de modo diferente. As mutações da AgGSTE2mut alteram sua dinâmica e modo de ação, sendo esta enzima particularmente capaz de se ligar ao DDT, com energia de ligação menor que as outras. Finalmente, os resultados do presente trabalho sugerem que estas enzimas desempenharam um papel crucial na adaptação de An. gambiae ao seu habitat e possivelmente a evolutibilidade destas GSTs teve participação neste processo evolutivo, sendo portanto alvos potenciais para o desenvolvimento de novas ferramentas de controle. Conclui-se que o papel da AgGSTE2 e AgGSTE5 na metabolização de inseticidas é importante para a adaptação do An. gambiae e o modo de ação destas enzimas deve ser entendido como uma importante via metabólica a ser interferida com o propósito de melhorar os inseticidas e métodos de controle. Os resultados permitem concluir que o modelo teórico é válido e que a AgGSTE2, AgGSTE2mut e AgGSTE5 apresentam diferenças na dinâmica e no modo de ligação aos compostos químicos estudados, o que provavelmente reflete em uma divergência funcional destas enzimas.
14

Impact of irrigated rice culture on the production of Anopheles mosquitos (Diptera:Culicidae) in the Niono region, Mali

Fortier, Sophie. January 2001 (has links)
No description available.
15

The organization and evolution of heterochromatin in the Anopheles gambiae complex

George, Phillip John-Paul 03 April 2014 (has links)
The Anopheles gambiae complex is comprised of the most important vectors of malaria in Sub-Saharan Africa. Most current control methods involve the use of chemicals that help to limit potential contact with these mosquitoes. However, these control methods still have risks that include insect resistance, environmental toxicity, human health, as well as animal health. In order to develop new strategies that either produce novel targeted insecticides or transgenic mosquitoes that can replace current mosquito populations, it is important to acquire as much biological information about the vector as possible. The reduction in cost and speed of high-throughput sequencing has brought forth many new sequenced genomes that can provide a wealth of information about individual populations as well as their respective evolutionary histories. However, in order to fully understand a genome, these sequences must be assembled properly. One of the largest challenges toward fully assembling a genome is the abundance of repetitive sequences. These sequences, typically part of gene poor regions known as heterochromatin, are generally left as unassembled scaffolds that are neglected in many genomic studies. Heterochromatin is a biologically important chromatin state that has roles in gene regulation and genome stability. Exclusion of these chromatin domains from experimental assays can provide an incomplete picture in regards to organismal biology. A lack of information regarding heterochromatin, even in An. gambiae, necessitates further understanding and characterization of this chromatin type that can provide valuable information about the mosquito's biology. Heterochromatin is organized differently amongst different species. Some species with compact genomes, like Drosophila melanogaster, exhibit rigid organization of heterochromatin, with repetitive elements being confined to peri-centromeric and sub-telomeric regions of the chromosome. Larger genomes such as Aedes aegypti, have a much less structured heterochromatin pattern, with repetitive elements being dispersed across the genome. However, An. gambiae's genome is more intermediate in size as well as transposable element content. These factors may have an impact in controlling how heterochromatin is organized within the An. gambiae genome. Does An. gambiae compensate for the increased genome size by expanding past the peri-centromeric heterochromatin into new intercalary compartments? In An. gambiae, heterochromatin had yet to be identified separately from euchromatin. Morphologically, some regions of An. gambiae chromosomes exhibited characteristics similar to transcriptionally active puffs or peri-centromeric heterochromatin. We characterize these regions, as well as the rest of the genomic landscape, by using morphological and genetic features to identify various chromatin types. Peri-centromeric heterochromatin and new regions of intercalary heterochromatin were identified. Genomic coordinates representing the transition from euchromatin to heterochromatin were also identified. By finding these heterochromatin-euchromatin boundaries, various genetic features could be assigned to either heterochromatin or euchromatin. Critical genes associated with heterochromatin formation and basic genomic functions were identified. These data help to better understand features that are associated with the different environments created by chromatin compaction. This study also looks at the Piwi-interacting RNA (piRNA) pathway and its role in An. gambiae. The piRNA pathway is associated with transposable element (TE) suppression in many species, where clusters of vestigial TEs provide some of the RNA necessary for the pathway to function. These clusters are primarily associated with heterochromatin in Drosophila melanogaster. We identify piRNA clusters in An. gambiae and see a similar shift from primarily peri-centromeric compartmentalization toward the presence of intercalary regions located within the euchromatin. Transposable elements are maintained in secondary heterochromatin regions that exhibit similar morphology and features to peri-centromeric heterochromatin. The piRNA pathway also has implications in gene regulation, germline development, and anti-viral immunity. Three candidate genes associated with spermatogenesis and embryogenesis have been identified. These genes showed piRNA enrichment, and upon further analysis show up-regulation after a blood meal is taken. These genes could potentially prove useful in vector control as targets of transgenic experiments. Heterochromatin is an important, yet neglected aspect of the genome. These studies attempt to provide data to stimulate the study of heterochromatin through characterization of heterochromatin-related genomic features. / Ph. D.
16

Comportement et olfaction d'Anopheles gambiae : interaction entre insecticide et mécanisme de résistance / Behaviour and olfaction of Anopheles gambiae : interaction between resistance mechanisms and insecticide

Porciani, Angélique 11 January 2016 (has links)
Le paludisme est une maladie provoquée par un protozoaire du genre Plasmodium sp. qui est transmis lors de la piqure par des moustiques du genre Anopheles. Actuellement, le contrôle de la maladie repose essentiellement sur la lutte contre les vecteurs avec notamment l’utilisation d’insecticides en imprégnation sur les moustiquaires ou en aspersion sur les murs à l’intérieur des habitations. Dans certaines régions, l’efficacité des insecticides est menacée par des mécanismes de résistance aux insecticides qui se développent dans les populations de vecteurs. Alors, que les mécanismes de résistance physiologique font l’objet de nombreuses recherches et sont maintenant assez bien connus, les modifications comportementales qui peuvent également conférer ou participer à la résistance à ces outils de lutte sont encore très peu étudiées. L’objectif de cette thèse est donc d’apporter des éléments nouveaux pour la compréhension des interactions entre insecticides, mécanismes de résistance physiologique et comportement. Durant cette thèse, nous nous sommes concentrés sur les mutations de cible L1014F et G119S des gènes codant respectivement pour le canal sodium voltage dépendant et pour l’acétylcholinestérase conférant une résistance croisée aux pyréthrinoïdes et organochlorés pour la première et aux carbamates et organophosphorés pour la seconde. Nous avons étudié leur influence sur le comportement de recherche de l’hôte et le système olfactif périphérique en présence ou non d’insecticides. Nos résultats ont permis de mettre en évidence des interactions complexes entre les insecticides présents dans l’environnement et les gènes de résistance sur le système olfactif et sur le comportement. Ces informations sont cruciales pour l’étude de l’impact de ces interactions sur l’efficacité des stratégies mis en place pour lutter contre la transmission du paludisme. / Malaria is caused by a protozoan belonging to the genus Plasmodium sp. transmitted to humans by Anopheles mosquitoes. Malaria control mainly relies on vector control strategies such as insecticide-treated bed nets or insecticide residual sprayings. In some areas, the effectiveness of insecticides is threatened by insecticide resistance mechanisms spreading in vector populations. Physiological resistance mechanisms have been deeply investigated whereas behavioural modulations conferring or involved in resistance have been overlooked. The objective of this thesis is to provide new insights to better understand the interactions between insecticide, physiological-resistance mechanisms and behaviour. In this thesis we focused on target-site mutations L1014F and G119S on genes respectively coding for voltage gated sodium channel and acetyl-cholinesterase conferring crossed resistance to organochlorides and pyrethroids for the former and crossed resistance to organophosphates and carbamates for the latter. We studied their impact on the host seeking behaviour and the peripheral olfactory system in the presence or absence of insecticides. Our results highlight the complex interactions between insecticides in environment and resistance mechanism on the olfactory system and on behaviour. That could lead to a better resistance management and an improvement in the use of insecticides. This knowledge is essential in order to decipher with the impact of such interactions of the efficacy of vector control tools scaled up to fight against malaria.
17

An Investigation of Insulator Proteins in Mosquito Genomes

Johanson, Michael 16 December 2013 (has links)
Transgenic mosquitoes are beneficial for the design and implementation of various pathogen control programs. However, low and variable expression of transgenes caused by position effects is a hindrance to the characterization and effective use of transgenes in mosquito species. The use of insulator sequences to flank transgenes may have the ability to overcome position effects caused by the genomic environment surrounding the insertion site. CTCF is a multifunctional protein, conserved from humans to Drosophila. Its role as an enhancer blocker in the Drosophila bithorax complex and its proximal binding to other insulator proteins on Drosophila chromosomes makes it a good candidate for identifying insulator sequences throughout the mosquito genome that may be used to improve mosquito transgenesis. Its multi-functionality as a transcription factor and genome organizer also makes CTCF worthy of investigation for an improved understanding of the regulation of the mosquito genome. This study uses chromatin immunoprecipitation with an An. gambiae CTCF antibody followed by Illumina deep sequencing (ChIP-Seq) to identify regions of CTCF binding throughout the An. gambiae genome. A subset of the CTCF binding site peaks was validated using ChIP-PCR. Another subset of this data set, including the ChIP-PCR validated peaks, was input into the motif finding tool, AlignACE, in order to identify a CTCF binding site consensus. Four motifs were identified, none of which were found in more than 11.9% of the ChIP-Seq data set. These results lead us to conclude that An. gambiae CTCF binds to a wider variety of sequences compared to Drosophila CTCF. This work also includes a comparison of the expression profiles of the dipteran insulator proteins, Su(Hw) and CP190, with that of CTCF across multiple life stages in Ae. aegypti. The results of this study suggest the possibility of genomic colocalization, as has been recently discovered in Drosophila. The identification of CTCF binding site peaks throughout the An. gambiae genome provides a large data set of potential insulator sequences that may be used to improve mosquito transgenesis, and provide a new model for the study of CTCF function in a species with medical significance.
18

The Population Genetic Structure of the Malaria Mosquito Anopheles melas Throughout Its West-African Range

Deitz, Kevin 2011 December 1900 (has links)
Anopheles melas is a brackish water mosquito found along the coast of West-Africa where it can be the dominant malaria vector locally. In order to facilitate genetic studies of this species and to examine the usefulness of microsatellite markers when used in a sibling species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. These loci were evaluated on their suitability as polymorphic markers based on repeat structure, length, and polymorphism in wild An. melas populations. Of the 45 loci, 18 were not considered promising markers in An. melas. A total of 48 out of 90 An. gambiae primers contained at least one mismatch with the An. melas annealing site. An. melas-specific primers were designed for 27 loci, and their variability was examined in two wild populations from Equatorial Guinea. Based on a low level of polymorphism, Hardy-Weinberg disequilibrium, or poor amplification, a further 12 loci were excluded. The remaining fifteen loci were screened in four additional wild populations from a wider geographic region including Equatorial Guinea, Cameroon, The Gambia, and Guinea Bissau. These loci showed an average heterozygosity ranging from 0.18 to 0.79, with 2.5 to 15 average alleles per locus, yielding 13 highly polymorphic markers and two loci with more limited variability in a wide geographic region. To examine the effects of cross species amplification, five of the original An. gambiae markers were also amplified in the An. melas populations. Null alleles were found for one of these An. gambiae markers. We discuss the pitfalls of using microsatellite loci even in a very closely related species, and conclude that in addition to the well-known problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species. Fifteen An. melas-specific markers were subsequently amplified and analyzed in 11 wild An. melas populations from throughout the range of this species, including Bioko Island, Equatorial Guinea. We analyzed pair-wise population differentiation between all populations, and found that all but two comparisons were significant (p-val.<0.05), and populations clustered into three distinct groups representing Bioko Island, Central Africa, and West Africa populations. A Bayesian clustering analysis found little, if any, evidence for migration from mainland to Bioko Island populations, although there was evidence of migration from Bioko Island to the West population cluster, and from the Central to the West population cluster. Simulations of historical gene followed these same patterns and further support our predictions of unidirectional gene flow. Comparison of 1161 nucleotides amplified and sequenced from the ND4 and ND5 regions of the mtDNA showed that differentiation between An. melas population clusters is on par with levels of differentiation between member species of the An. gambiae complex, with low support for internal nodes in a maximum likelihood tree, which suggests that observed An. melas clusters are not monophyletic. From this we hypothesize that Bioko Island An. melas populations are derived from Tiko, Cameroon, and that these populations became isolated from one another when sea levels rose after the last glaciation period (?10,000-11,000 years ago), cutting off Bioko Island populations from the mainland and significantly reducing migration. Our conclusions have implications for vector control within the region, as Bioko Island is the subject of an intensive malaria control campaign, and the lack of migration from mainland West Africa to Bioko Island make it unlikely that eradicated populations of this malaria vector will be repopulated by mainland immigrants.
19

Olfaction in mosquitoes : neuroanatomy and electrophysiology of the olfactory system /

Ghaninia, Majid, January 2007 (has links) (PDF)
Diss. (sammanfattning) Alnarp : Sveriges lantbruksuniv., 2007. / Härtill 4 uppsatser.
20

Identification of bacteria associated with malaria mosquitoes : their characterisation and potential use /

Lindh, Jenny, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Stockholm universitet, 2007. / Härtill 4 uppsatser.

Page generated in 0.0619 seconds