Spelling suggestions: "subject:"anpassungstest"" "subject:"anpassungstests""
1 |
Directed model checks for regression models from survival analysisGandy, Axel January 2005 (has links)
Zugl.: Ulm, Univ., Diss., 2005
|
2 |
Directed model checks for regression models from survival analysis /Gandy, Axel. January 2006 (has links)
Univ., Diss.--Ulm, 2005.
|
3 |
Empirical Hankel transform and statistical goodness-of-fit tests for exponential distributionsTaheri Zadeh, Fatemeh January 2009 (has links)
Zugl.: Hannover, Univ., Diss., 2009
|
4 |
Anwendungen des empirischen Likelihood-Schätzers der Fehlerverteilung in AR(1)-ProzessenGenz, Michael. Unknown Date (has links)
Universiẗat, Diss., 2004--Giessen.
|
5 |
Contributions to Extreme Value Theory in Finite and Infinite Dimensions: With a Focus on Testing for Generalized Pareto Models / Beiträge zur endlich- und unendlichdimensionalen Extremwerttheorie: Mit einem Schwerpunkt auf Tests auf verallgemeinerte Pareto-ModelleAulbach, Stefan January 2015 (has links) (PDF)
Extreme value theory aims at modeling extreme but rare events from a probabilistic point of view. It is well-known that so-called generalized Pareto distributions, which are briefly reviewed in Chapter 1, are the only reasonable probability distributions suited for modeling observations above a high threshold, such as waves exceeding the height of a certain dike, earthquakes having at least a certain intensity, and, after applying a simple transformation, share prices falling below some low threshold. However, there are cases for which a generalized Pareto model might fail. Therefore, Chapter 2 derives certain neighborhoods of a generalized Pareto distribution and provides several statistical tests for these neighborhoods, where the cases of observing finite dimensional data and of observing continuous functions on [0,1] are considered. By using a notation based on so-called D-norms it is shown that these tests consistently link both frameworks, the finite dimensional and the functional one. Since the derivation of the asymptotic distributions of the test statistics requires certain technical restrictions, Chapter 3 analyzes these assumptions in more detail. It provides in particular some examples of distributions that satisfy the null hypothesis and of those that do not. Since continuous copula processes are crucial tools for the functional versions of the proposed tests, it is also discussed whether those copula processes actually exist for a given set of data. Moreover, some practical advice is given how to choose the free parameters incorporated in the test statistics. Finally, a simulation study in Chapter 4 compares the in total three different test statistics with another test found in the literature that has a similar null hypothesis. This thesis ends with a short summary of the results and an outlook to further open questions. / Gegenstand der Extremwerttheorie ist die wahrscheinlichkeitstheoretische Modellierung von extremen, aber seltenen Ereignissen. Es ist wohlbekannt, dass sog. verallgemeinerte Pareto-Verteilungen, die in Kapitel 1 kurz zusammengefasst werden, die einzigen Wahrscheinlichkeitsverteilungen sind, mit denen sich Überschreitungen über hohe Schwellenwerte geeignet modellieren lassen, wie z. B. Fluthöhen, die einen Deich überschreiten, Erdbeben einer gewissen Mindeststärke, oder - nach einer einfachen Transformation - Aktienkurse, die einen festen Wert unterschreiten. Jedoch gibt es auch Fälle, in denen verallgemeinerte Pareto-Modelle fehlschlagen könnten. Deswegen beschäftigt sich Kapitel 2 mit gewissen Umgebungen einer verallgemeinerten Pareto-Verteilung und leitet mehrere statistische Tests auf diese Umgebungen her. Dabei werden sowohl multivariate Daten als auch Datensätze bestehend aus stetigen Funktionen auf [0,1] betrachtet. Durch Verwendung einer Notation basierend auf sog. D-Normen wird insbesondere gezeigt, dass die vorgestellten Testverfahren beide Fälle, den multivariaten und den funktionalen, auf natürliche Weise miteinander verbinden. Da das asymptotische Verhalten dieser Tests von einigen technischen Voraussetzungen abhängt, werden diese Annahmen in Kapitel 3 detaillierter analysiert. Insbesondere werden Beispiele für Verteilungen betrachtet, die die Nullhypothese erfüllen, und solche, die das nicht tun. Aufgrund ihrer Bedeutung für die funktionale Version der Tests wird auch der Frage nachgegangen, ob sich ein Datensatz durch stetige Copula-Prozesse beschreiben lässt. Außerdem wird auf die Wahl der freien Parameter in den Teststatistiken eingegangen. Schließlich befasst sich Kapitel 4 mit den Ergebnissen einer Simulationsstudie, um die insgesamt drei Testverfahren mit einem ähnlichen Test aus der Literatur zu vergleichen. Diese Arbeit endet mit einer kurzen Zusammenfassung und einem Ausblick auf weiterführende Fragestellungen.
|
Page generated in 0.0452 seconds