Spelling suggestions: "subject:"intercolony optimisation"" "subject:"intracolony optimisation""
1 |
Ensemble clustering via heuristic optimisationLi, Jian January 2010 (has links)
Traditional clustering algorithms have different criteria and biases, and there is no single algorithm that can be the best solution for a wide range of data sets. This problem often presents a significant obstacle to analysts in revealing meaningful information buried among the huge amount of data. Ensemble Clustering has been proposed as a way to avoid the biases and improve the accuracy of clustering. The difficulty in developing Ensemble Clustering methods is to combine external information (provided by input clusterings) with internal information (i.e. characteristics of given data) effectively to improve the accuracy of clustering. The work presented in this thesis focuses on enhancing the clustering accuracy of Ensemble Clustering by employing heuristic optimisation techniques to achieve a robust combination of relevant information during the consensus clustering stage. Two novel heuristic optimisation-based Ensemble Clustering methods, Multi-Optimisation Consensus Clustering (MOCC) and K-Ants Consensus Clustering (KACC), are developed and introduced in this thesis. These methods utilise two heuristic optimisation algorithms (Simulated Annealing and Ant Colony Optimisation) for their Ensemble Clustering frameworks, and have been proved to outperform other methods in the area. The extensive experimental results, together with a detailed analysis, will be presented in this thesis.
|
2 |
Fuzzy rules from ant-inspired computationGalea, Michelle January 2007 (has links)
This research identifies and investigates major issues in inducing accurate and comprehensible fuzzy rules from datasets. A review of the current literature on fuzzy rulebase induction uncovers two significant issues: A. There is a tradeoff between inducing accurate fuzzy rules and inducing comprehensible fuzzy rules; and, B. A common strategy for the induction of fuzzy rulebases, that of iterative rule learning where the rules are generated one by one and independently of each other, may not be an optimal one. FRANTIC, a system that provides a framework for exploring the claims above is developed. At the core lies a mechanism for creating individual fuzzy rules. This is based on a significantly modified social insect-inspired heuristic for combinatorial optimisation -- Ant Colony Optimisation. The rule discovery mechanism is utilised in two very different strategies for the induction of a complete fuzzy rulebase: 1. The first follows the common iterative rule learning approach for the induction of crisp and fuzzy rules; 2. The second has been designed during this research explicitly for the induction of a fuzzy rulebase, and generates all rules in parallel. Both strategies have been tested on a number of classification problems, including medical diagnosis and industrial plant fault detection, and compared against other crisp or fuzzy induction algorithms that use more well-established approaches. The results challenge statement A above, by presenting evidence to show that one criterion need not be met at the expense of the other. This research also uncovers the cost that is paid -- that of computational expenditure -- and makes concrete suggestions on how this may be resolved. With regards to statement B, until now little or no evidence has been put forward to support or disprove the claim. The results of this research indicate that definite advantages are offered by the second simultaneous strategy, that are not offered by the iterative one. These benefits include improved accuracy over a wide range of values for several key system parameters. However, both approaches also fare well when compared to other learning algorithms. This latter fact is due to the rule discovery mechanism itself -- the adapted Ant Colony Optimisation algorithm -- which affords several additional advantages. These include a simple mechanism within the rule construction process that enables it to cope with datasets that have an imbalanced distribution between the classes, and another for controlling the amount of fit to the training data. In addition, several system parameters have been designed to be semi-autonomous so as to avoid unnecessary user intervention, and in future work the social insect metaphor may be exploited and extended further to enable it to deal with industrial-strength data mining issues involving large volumes of data, and distributed and/or heterogeneous databases.
|
3 |
Experimentation on dynamic congestion control in Software Defined Networking (SDN) and Network Function Virtualisation (NFV)Kamaruddin, Amalina Farhan January 2017 (has links)
In this thesis, a novel framework for dynamic congestion control has been proposed. The study is about the congestion control in broadband communication networks. Congestion results when demand temporarily exceeds capacity and leads to severe degradation of Quality of Service (QoS) and possibly loss of traffic. Since traffic is stochastic in nature, high demand may arise anywhere in a network and possibly causing congestion. There are different ways to mitigate the effects of congestion, by rerouting, by aggregation to take advantage of statistical multiplexing, and by discarding too demanding traffic, which is known as admission control. This thesis will try to accommodate as much traffic as possible, and study the effect of routing and aggregation on a rather general mix of traffic types. Software Defined Networking (SDN) and Network Function Virtualization (NFV) are concepts that allow for dynamic configuration of network resources by decoupling control from payload data and allocation of network functions to the most suitable physical node. This allows implementation of a centralised control that takes the state of the entire network into account and configures nodes dynamically to avoid congestion. Assumes that node controls can be expressed in commands supported by OpenFlow v1.3. Due to state dependencies in space and time, the network dynamics are very complex, and resort to a simulation approach. The load in the network depends on many factors, such as traffic characteristics and the traffic matrix, topology and node capacities. To be able to study the impact of control functions, some parts of the environment is fixed, such as the topology and the node capacities, and statistically average the traffic distribution in the network by randomly generated traffic matrices. The traffic consists of approximately equal intensity of smooth, bursty and long memory traffic. By designing an algorithm that route traffic and configure queue resources so that delay is minimised, this thesis chooses the delay to be the optimisation parameter because it is additive and real-time applications are delay sensitive. The optimisation being studied both with respect to total end-to-end delay and maximum end-to-end delay. The delay is used as link weights and paths are determined by Dijkstra's algorithm. Furthermore, nodes are configured to serve the traffic optimally which in turn depends on the routing. The proposed algorithm is a fixed-point system of equations that iteratively evaluates routing - aggregation - delay until an equilibrium point is found. Three strategies are compared: static node configuration where each queue is allocated 1/3 of the node resources and no aggregation, aggregation of real-time (taken as smooth and bursty) traffic onto the same queue, and dynamic aggregation based on the entropy of the traffic streams and their aggregates. The results of the simulation study show good results, with gains of 10-40% in the QoS parameters. By simulation, the positive effects of the proposed routing and aggregation strategy and the usefulness of the algorithm. The proposed algorithm constitutes the central control logic, and the resulting control actions are realisable through the SDN/NFV architecture.
|
4 |
Solution biases and pheromone representation selection in ant colony optimisationMontgomery, James Unknown Date (has links)
Combinatorial optimisation problems (COPs) pervade human society: scheduling, design, layout, distribution, timetabling, resource allocation and project management all feature problems where the solution is some combination of elements, the overall value of which needs to be either maximised or minimised (i.e., optimised), typically subject to a number of constraints. Thus, techniques to efficiently solve such problems are an important area of research. A popular group of optimisation algorithms are the metaheuristics, approaches that specify how to search the space of solutions in a problem independent way so that high quality solutions are likely to result in a reasonable amount of computational time. Although metaheuristic algorithms are specified in a problem independent manner, they must be tailored to suit each particular problem to which they are applied. This thesis investigates a number of aspects of the application of the relatively new Ant Colony Optimisation (ACO) metaheuristic to different COPs.The standard ACO metaheuristic is a constructive algorithm loosely based on the foraging behaviour of ant colonies, which are able to find the shortest path to a food source by indirect communication through pheromones. ACO’s artificial pheromone represents a model of the solution components that its artificial ants use to construct solutions. Developing an appropriate pheromone representation is a key aspect of the application of ACO to a problem. An examination of existing ACO applications and the constructive approach more generally reveals how the metaheuristic can be applied more systematically across a range of COPs. The two main issues addressed in this thesis are biases inherent in the constructive process and the systematic selection of pheromone representations.The systematisation of ACO should lead to more consistently high performance of the algorithm across different problems. Additionally, it supports the creation of a generalised ACO system, capable of adapting itself to suit many different combinatorial problems without the need for manual intervention.
|
5 |
Solution biases and pheromone representation selection in ant colony optimisationMontgomery, James Unknown Date (has links)
Combinatorial optimisation problems (COPs) pervade human society: scheduling, design, layout, distribution, timetabling, resource allocation and project management all feature problems where the solution is some combination of elements, the overall value of which needs to be either maximised or minimised (i.e., optimised), typically subject to a number of constraints. Thus, techniques to efficiently solve such problems are an important area of research. A popular group of optimisation algorithms are the metaheuristics, approaches that specify how to search the space of solutions in a problem independent way so that high quality solutions are likely to result in a reasonable amount of computational time. Although metaheuristic algorithms are specified in a problem independent manner, they must be tailored to suit each particular problem to which they are applied. This thesis investigates a number of aspects of the application of the relatively new Ant Colony Optimisation (ACO) metaheuristic to different COPs.The standard ACO metaheuristic is a constructive algorithm loosely based on the foraging behaviour of ant colonies, which are able to find the shortest path to a food source by indirect communication through pheromones. ACO’s artificial pheromone represents a model of the solution components that its artificial ants use to construct solutions. Developing an appropriate pheromone representation is a key aspect of the application of ACO to a problem. An examination of existing ACO applications and the constructive approach more generally reveals how the metaheuristic can be applied more systematically across a range of COPs. The two main issues addressed in this thesis are biases inherent in the constructive process and the systematic selection of pheromone representations.The systematisation of ACO should lead to more consistently high performance of the algorithm across different problems. Additionally, it supports the creation of a generalised ACO system, capable of adapting itself to suit many different combinatorial problems without the need for manual intervention.
|
6 |
ACODV : Ant Colony Optimisation Distance Vector routing in ad hoc networksDu Plessis, Johan 11 April 2007 (has links)
A mobile ad hoc network is a collection of wireless mobile devices which dynamically form a temporary network, without using any existing network infrastructure or centralised administration. Each node in the network effectively becomes a router, and forwards packets towards the packet’s destination node. Ad hoc networks are characterized by frequently changing network topology, multi-hop wireless connections and the need for dynamic, efficient routing protocols. <p.This work considers the routing problem in a network of uniquely addressable sensors. These networks are encountered in many industrial applications, where the aim is to relay information from a collection of data gathering devices deployed over an area to central points. The routing problem in such networks are characterised by: <ul> <li>The overarching requirement for low power consumption, as battery powered sensors may be required to operate for years without battery replacement;</li> <li>An emphasis on reliable communication as opposed to real-time communication, it is more important for packets to arrive reliably than to arrive quickly; and</li> <li>Very scarce processing and memory resources, as these sensors are often implemented on small low-power microprocessors.</li> </ul> This work provides overviews of routing protocols in ad hoc networks, swarm intelligence, and swarm intelligence applied to ad hoc routing. Various mechanisms that are commonly encountered in ad hoc routing are experimentally evaluated under situations as close to real-life as possible. Where possible, enhancements to the mechanisms are suggested and evaluated. Finally, a routing protocol suitable for such low-power sensor networks is defined and benchmarked in various scenarios against the Ad hoc On-Demand Distance Vector (AODV) algorithm. / Dissertation (MSc)--University of Pretoria, 2005. / Computer Science / Unrestricted
|
7 |
Distribution network automation for multi-objective optimisationZhang, Boyi January 2018 (has links)
Asset management and automation are acknowledged by distribution utilities as a useful strategy to improve service quality and reliability. However, the major challenge faced by decision makers in distribution utilities is how to achieve long-term return on the projects while minimising investment and operation costs. Distribution automation (DA) in terms of transformer economic operation (TEO), distribution network reconfiguration (DNR), and sectionalising switch placement (SSP) is recognised as the most effective way for distribution network operators (DNOs) to increase operation efficiency and reliability. Automated tie-switches and sectionalising switches play a fundamental role in distribution networks. A method based on the Monte Carlo simulation is discussed for transformer loss reduction, which comprises of profile generators of residential demand and a distribution network model. The ant colony optimisation (ACO) algorithm is then developed for optimal DNR and TEO to minimise network loss. An ACO algorithm based on a fuzzy multi-objective approach is proposed to solve SSP problem, which considers reliability indices and switch costs. Finally, a multi-objective ant colony optimisation (MOACO) and an artificial immune systems-ant colony optimisation (AIS-ACO) algorithm are developed to solve the reconfiguration problem, which is formulated within a multi-objective framework using the concept of Pareto optimality. The performance of the optimisation techniques has been assessed and illustrated by various case studies on three distribution networks. The obtained optimum network configurations indicate the effectiveness of the proposed methods for optimal DA.
|
8 |
Ant colony optimisation algorithms for solving multi-objective power-aware metrics for mobile ad hoc networksConstantinou, Demetrakis 01 July 2011 (has links)
A mobile ad hoc network (MANET) is an infrastructure-less multi-hop network where each node communicates with other nodes directly or indirectly through intermediate nodes. Thus, all nodes in a MANET basically function as mobile routers participating in some routing protocol required for deciding and maintaining the routes. Since MANETs are infrastructure-less, self-organizing, rapidly deployable wireless networks, they are highly suitable for applications such as military tactical operations, search and rescue missions, disaster relief operations, and target tracking. Building such ad-hoc networks poses a significant technical challenge because of energy constraints and specifically in relation to the application of wireless network protocols. As a result of its highly dynamic and distributed nature, the routing layer within the wireless network protocol stack, presents one of the key technical challenges in MANETs. In particular, energy efficient routing may be the most important design criterion for MANETs since mobile nodes are powered by batteries with limited capacity and variable recharge frequency, according to application demand. In order to conserve power it is essential that a routing protocol be designed to guarantee data delivery even should most of the nodes be asleep and not forwarding packets to other nodes. Load distribution constitutes another important approach to the optimisation of active communication energy. Load distribution enables the maximisation of the network lifetime by facilitating the avoidance of over-utilised nodes when a route is in the process of being selected. Routing algorithms for mobile networks that attempt to optimise routes while at- tempting to retain a small message overhead and maximise the network lifetime has been put forward. However certain of these routing protocols have proved to have a negative impact on node and network lives by inadvertently over-utilising the energy resources of a small set of nodes in favour of others. The conservation of power and careful sharing of the cost of routing packets would ensure an increase in both node and network lifetimes. This thesis proposes simultaneously, by using an ant colony optimisation (ACO) approach, to optimise five power-aware metrics that do result in energy-efficient routes and also to maximise the MANET's lifetime while taking into consideration a realistic mobility model. By using ACO algorithms a set of optimal solutions - the Pareto-optimal set - is found. This thesis proposes five algorithms to solve the multi-objective problem in the routing domain. The first two algorithms, namely, the energy e±ciency for a mobile network using a multi-objective, ant colony optimisation, multi-pheromone (EEMACOMP) algorithm and the energy efficiency for a mobile network using a multi-objective, ant colony optimisation, multi-heuristic (EEMACOMH) algorithm are both adaptations of multi-objective, ant colony optimisation algorithms (MOACO) which are based on the ant colony system (ACS) algorithm. The new algorithms are constructive which means that in every iteration, every ant builds a complete solution. In order to guide the transition from one state to another, the algorithms use pheromone and heuristic information. The next two algorithms, namely, the energy efficiency for a mobile network using a multi-objective, MAX-MIN ant system optimisation, multi-pheromone (EEMMASMP) algorithm and the energy efficiency for a mobile network using a multi-objective, MAX- MIN ant system optimisation, multi-heuristic (EEMMASMH) algorithm, both solve the above multi-objective problem by using an adaptation of the MAX-MIN ant system optimisation algorithm. The last algorithm implemented, namely, the energy efficiency for a mobile network using a multi-objective, ant colony optimisation, multi-colony (EEMACOMC) algorithm uses a multiple colony ACO algorithm. From the experimental results the final conclusions may be summarised as follows:<ul><li> Ant colony, multi-objective optimisation algorithms are suitable for mobile ad hoc networks. These algorithms allow for high adaptation to frequent changes in the topology of the network. </li><li> All five algorithms yielded substantially better results than the non-dominated sorting genetic algorithm (NSGA-II) in terms of the quality of the solution. </li><li> All the results prove that the EEMACOMP outperforms the other four ACO algorithms as well as the NSGA-II algorithm in terms of the number of solutions, closeness to the true Pareto front and diversity. </li></ul> / Thesis (PhD)--University of Pretoria, 2010. / Computer Science / unrestricted
|
9 |
Capacity Enhancement Approaches for Long Term Evolution networks: Capacity Enhancement-Inspired Self-Organized Networking to Enhance Capacity and Fairness of Traffic in Long Term Evolution Networks by Utilising Dynamic Mobile Base-StationsAlrowili, Mohammed F.H. January 2018 (has links)
The long-term evolution (LTE) network has been proposed to provide better network capacity than the earlier 3G network. Driven by the market, the conventional LTE (3G) network standard could not achieve the expectations of the international mobile telecommunications advanced (IMT-Advanced) standard. To satisfy this gap, the LTE-Advanced was introduced with additional network functionalities to meet up with the IMT-Advanced Standard. In addition, due to the need to minimize operational expenditure (OPEX) and reduce human interventions, the wireless cellular networks are required to be self-aware, self-reconfigurable, self-adaptive and smart. An example of such network involves transceiver base stations (BTSs) within a self-organizing network (SON).
Besides these great breakthroughs, the conventional LTE and LTE-Advanced networks have not been designed with the intelligence of scalable capacity output especially in sudden demographic changes, namely during events of football, malls, worship centres or during religious and cultural festivals. Since most of these events cannot be predicted, modern cellular networks must be scalable in terms of capacity and coverage in such unpredictable demographic surge. Thus, the use of dynamic BTSs is proposed to be used in modern and future cellular networks for crowd and demographic change managements.
Dynamic BTSs are complements of the capability of SONs to search, determine and deploy less crowded/idle BTSs to densely crowded cells for scalable capacity management. The mobile BTSs will discover areas of dark coverages and fill-up the gap in terms of providing cellular services. The proposed network relieves the LTE network from overloading thus reducing packet loss, delay and improves fair load sharing.
In order to trail the best (least) path, a bio-inspired optimization algorithm based on swarm-particle optimization is proposed over the dynamic BTS network. It uses the ant-colony optimization algorithm (ACOA) to find the least path. A comparison between an optimized path and the un-optimized path showed huge gain in terms of delay, fair load sharing and the percentage of packet loss.
|
10 |
Modelling and solving mixed-model parallel two-sided assembly line problemsKucukkoc, Ibrahim January 2015 (has links)
The global competitive environment and the growing demand for personalised products have increased the interest of companies in producing similar product models on the same assembly line. Companies are forced to make significant structural changes to rapidly respond to diversified demands and convert their existing single-model lines into mixed-model lines in order to avoid unnecessary new line construction cost for each new product model. Mixed-model assembly lines play a key role in increasing productivity without compromising quality for manufacturing enterprises. The literature is extensive on assembling small-sized products in an intermixed sequence and assembling large-sized products in large volumes on single-model lines. However, a mixed-model parallel two-sided line system, where two or more similar products or similar models of a large-sized product are assembled on each of the parallel two-sided lines in an intermixed sequence, has not been of interest to academia so far. Moreover, taking model sequencing problem into consideration on a mixed-model parallel two-sided line system is a novel research topic in this domain. Within this context, the problem of simultaneous balancing and sequencing of mixed-model parallel two-sided lines is defined and described using illustrative examples for the first time in the literature. The mathematical model of the problem is also developed to exhibit the main characteristics of the problem and to explore the logic underlying the algorithms developed. The benefits of utilising multi-line stations between two adjacent lines are discussed and numerical examples are provided. An agent-based ant colony optimisation algorithm (called ABACO) is developed to obtain a generic solution that conforms to any model sequence and it is enhanced step-by-step to increase the quality of the solutions obtained. Then, the algorithm is modified with the integration of a model sequencing procedure (where the modified version is called ABACO/S) to balance lines by tracking the product model changes on each workstation in a complex production environment where each of the parallel lines may a have different cycle time. Finally, a genetic algorithm based model sequencing mechanism is integrated to the algorithm to increase the robustness of the obtained solutions. Computational tests are performed using test cases to observe the performances of the developed algorithms. Statistical tests are conducted through obtained results and test results establish that balancing mixed-model parallel two-sided lines together has a significant effect on the sought performance measures (a weighted summation of line length and the number of workstations) in comparison with balancing those lines separately. Another important finding of the research is that considering model sequencing problem along with the line balancing problem helps algorithm find better line balances with better performance measures. The results also indicate that the developed ABACO and ABACO/S algorithms outperform other test heuristics commonly used in the literature in solving various line balancing problems; and integrating a genetic algorithm based model sequencing mechanism into ABACO/S helps the algorithm find better solutions with less amount of computational effort.
|
Page generated in 0.1144 seconds