• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

EXPLAINING VARIATION IN AMERICAN LOBSTER (HOMARUS AMERICANUS) AND SNOW CRAB (CHIONOECETES OPILIO) ABUNDANCE IN THE NORTHWEST ATLANTIC OCEAN

Boudreau, Stephanie Anne 26 March 2012 (has links)
In this thesis I assessed the causes of long-term changes in two large, commercially important decapod crustacean populations, American lobster (Homarus americanus) and snow crab (Chionoecetes opilio), in the northwest (NW) Atlantic Ocean. By combining available time-series data, including commercial landings, research surveys, and local ecological knowledge (LEK), I explored the causes of an observed ecosystem shift in the NW Atlantic (~1950–2009) which entailed a region-wide decline of groundfish and an increase in benthic invertebrates, including these decapods. Three hypotheses were examined to explain the increase in decapod abundance: (1) the predation hypothesis, whereby a decrease in predatory groundfish led to an increase in their decapod prey (top-down effects); (2) the climate hypothesis, whereby changes in temperature or other climatic variables helped to increase decapod numbers (bottom-up effects); and (3) the anthropogenic hypothesis, whereby changes in fishing pressure drove decapod population dynamics. I explored these hypotheses separately for lobster and snow crab, which may experience different ecological and commercial pressures. First, I investigated the interactions between predatory groundfish and lobster in the inshore region of southwest Nova Scotia. Long-term fisheries-independent abundance indices for lobsters and their predators are available for Gulf of Maine (GOM) waters in the USA, but not in Canada. To address research gaps I designed and executed a survey to collect the LEK of lobster fishermen fishing in the Canadian GOM. Forty-two fishermen were interviewed. Corresponding survey results from the USA were compared to the LEK results. Both sources provided evidence for a top-down effect (predation release), contributing to observed increases in GOM lobster abundance and landings. Second, I explored relationships between lobster abundance and landings in the NW Atlantic as they may relate to temporal changes in predators, temperature, climate (North Atlantic Oscillation Index, NAOI), and fishing. Available landings data and fisheries-independent abundance estimates were collated to investigate trends in lobster abundance and catch. Links between lobster, groundfish, temperature and climate indices were explored using mixed effects models. Results offered partial support for the predation hypothesis, namely in the waters off Newfoundland, Nova Scotia, and southern New England as well as broad support for a climate effect on early life stages. This effect appeared related to a region-wide climate signal, the NAOI, but was independent of changes in water temperature. Fishing effort appeared to be following lobster abundance, rather than regulating abundance in a consistent way. Third, variation in snow crab abundance was examined through meta-analysis of time-series data of cod and crab abundance and temperature. Temperature had opposing effects on the two species: snow crab abundance was negatively correlated with temperature whereas cod and temperature were positively related. Controlling for the effect of temperature, the analysis revealed significant negative interactions between snow crab and cod abundance, with cod leading snow crab up to a five-year lag. Results indicate that snow crab is largely influenced by temperature during early post-settlement years and becomes increasingly regulated by top-down mechanisms as they approach fishery recruitment. Overall, I conclude that both climate and predation can act as population controls on large decapod populations, but these variables affect decapods at different life stages.

Page generated in 0.0714 seconds