• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing roll stability and directional performance of articulated heavy vehicles based on anti-roll control and design optimization.

Oberoi, Dhruv 01 October 2011 (has links)
This research presents an investigation to actively improve the rollover stability of articulated heavy vehicles (AHVs) during high speed manoeuvres using anti-roll control systems. A 3-dimensional (3-D) linear yaw/roll model with 5 degrees of freedom is developed. Based on this model a linear quadratic regulator (LQR) controller is designed to improve the rollover stability of a tractor/semi-trailer combination. A design optimization method for AHVs using genetic algorithms (GAs) and multibody vehicle system models is also presented. AHVs have poor manoeuvrability when travelling at low speeds on local roads and city streets. On the other hand, these vehicles exhibit unstable motion modes at high speeds, including jack-knifing, trailer sway and rollover. From the design point of view, the low-speed manoeuvrability and high-speed stability have conflicting requirements on some design variables. The design method based on a GA and a multibody vehicle dynamic package, TruckSim, is proposed to coordinate this trade-off relationship. To test the effectiveness of the design method, a tractor/semi-trailer combination is optimized using the proposed method. It is demonstrated that the proposed design method can be used for identifying desired design variables and predict performance envelopes in the early design stages of AHVs. / UOIT

Page generated in 0.1094 seconds