• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photorealistic Surface Rendering with Microfacet Theory / Rendu photoréaliste de surfaces avec la théorie des microfacettes

Dupuy, Jonathan 26 November 2015 (has links)
La synthèse d'images dites photoréalistes nécessite d'évaluer numériquement la manière dont la lumière et la matière interagissent physiquement, ce qui, malgré la puissance de calcul impressionnante dont nous bénéficions aujourd'hui et qui ne cesse d'augmenter, est encore bien loin de devenir une tâche triviale pour nos ordinateurs. Ceci est dû en majeure partie à la manière dont nous représentons les objets: afin de reproduire les interactions subtiles qui mènent à la perception du détail, il est nécessaire de modéliser des quantités phénoménales de géométries. Au moment du rendu, cette complexité conduit inexorablement à de lourdes requêtes d'entrées-sorties, qui, couplées à des évaluations d'opérateurs de filtrage complexes, rendent les temps de calcul nécessaires à produire des images sans défaut totalement déraisonnables. Afin de pallier ces limitations sous les contraintes actuelles, il est nécessaire de dériver une représentation multiéchelle de la matière. Dans cette thèse, nous construisons une telle représentation pour la matière dont l'interface correspond à une surface perturbée, une configuration qui se construit généralement via des cartes d'élévations en infographie. Nous dérivons notre représentation dans le contexte de la théorie des microfacettes (conçue à l'origine pour modéliser la réflectance de surfaces rugueuses), que nous présentons d'abord, puis augmentons en deux temps. Dans un premier temps, nous rendons la théorie applicable à travers plusieurs échelles d'observation en la généralisant aux statistiques de microfacettes décentrées. Dans l'autre, nous dérivons une procédure d'inversion capable de reconstruire les statistiques de microfacettes à partir de réponses de réflexion d'un matériau arbitraire dans les configurations de rétroréflexion. Nous montrons comment cette théorie augmentée peut être exploitée afin de dériver un opérateur général et efficace de rééchantillonnage approximatif de cartes d'élévations qui (a) préserve l'anisotropie du transport de la lumière pour n'importe quelle résolution, (b) peut être appliqué en amont du rendu et stocké dans des MIP maps afin de diminuer drastiquement le nombre de requêtes d'entrées-sorties, et (c) simplifie de manière considérable les opérations de filtrage par pixel, le tout conduisant à des temps de rendu plus courts. Afin de valider et démontrer l'efficacité de notre opérateur, nous synthétisons des images photoréalistes anticrenelées et les comparons à des images de référence. De plus, nous fournissons une implantation C++ complète tout au long de la dissertation afin de faciliter la reproduction des résultats obtenus. Nous concluons avec une discussion portant sur les limitations de notre approche, ainsi que sur les verrous restant à lever afin de dériver une représentation multiéchelle de la matière encore plus générale / Photorealistic rendering involves the numeric resolution of physically accurate light/matter interactions which, despite the tremendous and continuously increasing computational power that we now have at our disposal, is nowhere from becoming a quick and simple task for our computers. This is mainly due to the way that we represent objects: in order to reproduce the subtle interactions that create detail, tremendous amounts of geometry need to be queried. Hence, at render time, this complexity leads to heavy input/output operations which, combined with numerically complex filtering operators, require unreasonable amounts of computation times to guarantee artifact-free images. In order to alleviate such issues with today's constraints, a multiscale representation for matter must be derived. In this thesis, we derive such a representation for matter whose interface can be modelled as a displaced surface, a configuration that is typically simulated with displacement texture mapping in computer graphics. Our representation is derived within the realm of microfacet theory (a framework originally designed to model reflection of rough surfaces), which we review and augment in two respects. First, we render the theory applicable across multiple scales by extending it to support noncentral microfacet statistics. Second, we derive an inversion procedure that retrieves microfacet statistics from backscattering reflection evaluations. We show how this augmented framework may be applied to derive a general and efficient (although approximate) down-sampling operator for displacement texture maps that (a) preserves the anisotropy exhibited by light transport for any resolution, (b) can be applied prior to rendering and stored into MIP texture maps to drastically reduce the number of input/output operations, and (c) considerably simplifies per-pixel filtering operations, resulting overall in shorter rendering times. In order to validate and demonstrate the effectiveness of our operator, we render antialiased photorealistic images against ground truth. In addition, we provide C++ implementations all along the dissertation to facilitate the reproduction of the presented results. We conclude with a discussion on limitations of our approach, and avenues for a more general multiscale representation for matter
2

Photorealistic Surface Rendering with Microfacet Theory

Dupuy, Jonathan 09 1900 (has links)
La synthèse d'images dites photoréalistes nécessite d'évaluer numériquement la manière dont la lumière et la matière interagissent physiquement, ce qui, malgré la puissance de calcul impressionnante dont nous bénéficions aujourd'hui et qui ne cesse d'augmenter, est encore bien loin de devenir une tâche triviale pour nos ordinateurs. Ceci est dû en majeure partie à la manière dont nous représentons les objets: afin de reproduire les interactions subtiles qui mènent à la perception du détail, il est nécessaire de modéliser des quantités phénoménales de géométries. Au moment du rendu, cette complexité conduit inexorablement à de lourdes requêtes d'entrées-sorties, qui, couplées à des évaluations d'opérateurs de filtrage complexes, rendent les temps de calcul nécessaires à produire des images sans défaut totalement déraisonnables. Afin de pallier ces limitations sous les contraintes actuelles, il est nécessaire de dériver une représentation multiéchelle de la matière. Dans cette thèse, nous construisons une telle représentation pour la matière dont l'interface correspond à une surface perturbée, une configuration qui se construit généralement via des cartes d'élévations en infographie. Nous dérivons notre représentation dans le contexte de la théorie des microfacettes (conçue à l'origine pour modéliser la réflectance de surfaces rugueuses), que nous présentons d'abord, puis augmentons en deux temps. Dans un premier temps, nous rendons la théorie applicable à travers plusieurs échelles d'observation en la généralisant aux statistiques de microfacettes décentrées. Dans l'autre, nous dérivons une procédure d'inversion capable de reconstruire les statistiques de microfacettes à partir de réponses de réflexion d'un matériau arbitraire dans les configurations de rétroréflexion. Nous montrons comment cette théorie augmentée peut être exploitée afin de dériver un opérateur général et efficace de rééchantillonnage approximatif de cartes d'élévations qui (a) préserve l'anisotropie du transport de la lumière pour n'importe quelle résolution, (b) peut être appliqué en amont du rendu et stocké dans des MIP maps afin de diminuer drastiquement le nombre de requêtes d'entrées-sorties, et (c) simplifie de manière considérable les opérations de filtrage par pixel, le tout conduisant à des temps de rendu plus courts. Afin de valider et démontrer l'efficacité de notre opérateur, nous synthétisons des images photoréalistes anticrenelées et les comparons à des images de référence. De plus, nous fournissons une implantation C++ complète tout au long de la dissertation afin de faciliter la reproduction des résultats obtenus. Nous concluons avec une discussion portant sur les limitations de notre approche, ainsi que sur les verrous restant à lever afin de dériver une représentation multiéchelle de la matière encore plus générale. / Photorealistic rendering involves the numeric resolution of physically accurate light/matter interactions which, despite the tremendous and continuously increasing computational power that we now have at our disposal, is nowhere from becoming a quick and simple task for our computers. This is mainly due to the way that we represent objects: in order to reproduce the subtle interactions that create detail, tremendous amounts of geometry need to be queried. Hence, at render time, this complexity leads to heavy input/output operations which, combined with numerically complex filtering operators, require unreasonable amounts of computation times to guarantee artifact-free images. In order to alleviate such issues with today's constraints, a multiscale representation for matter must be derived. In this thesis, we derive such a representation for matter whose interface can be modelled as a displaced surface, a configuration that is typically simulated with displacement texture mapping in computer graphics. Our representation is derived within the realm of microfacet theory (a framework originally designed to model reflection of rough surfaces), which we review and augment in two respects. First, we render the theory applicable across multiple scales by extending it to support noncentral microfacet statistics. Second, we derive an inversion procedure that retrieves microfacet statistics from backscattering reflection evaluations. We show how this augmented framework may be applied to derive a general and efficient (although approximate) down-sampling operator for displacement texture maps that (a) preserves the anisotropy exhibited by light transport for any resolution, (b) can be applied prior to rendering and stored into MIP texture maps to drastically reduce the number of input/output operations, and (c) considerably simplifies per-pixel filtering operations, resulting overall in shorter rendering times. In order to validate and demonstrate the effectiveness of our operator, we render antialiased photorealistic images against ground truth. In addition, we provide C++ implementations all along the dissertation to facilitate the reproduction of the presented results. We conclude with a discussion on limitations of our approach, and avenues for a more general multiscale representation for matter.

Page generated in 0.0518 seconds