• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variant antigens at the infected red cell surface in Plasmodium falciparum malaria /

Fernandez, Victor, January 2001 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2001. / Härtill 6 uppsatser.
2

Plants as bioreactors: expression of toxoplasma gondii surface antigen P30 in transgenic tobacco plants.

January 2001 (has links)
by Yu Wing Sze. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 119-126). / Abstracts in English and Chinese. / Thesis Committee --- p.ii / Statement --- p.iii / Acknowledgements --- p.iv / Abstract --- p.vi / 摘要 --- p.viii / Table of Contents --- p.x / List of Tables --- p.xvi / List of Figures --- p.xvii / List of Abbreviations --- p.xx / Chapter CHAPTER 1 --- General Introduction --- p.1 / Chapter CHAPTER 2 --- Literature Review --- p.3 / Chapter 2.1 --- Toxoplasma gondii --- p.3 / Chapter 2.1.1 --- Morphology and Life Cycle of T. gondii --- p.3 / Chapter 2.1.2 --- Routes of Transmission --- p.7 / Chapter 2.2 --- Toxoplasmosis --- p.8 / Chapter 2.2.1 --- Influences and Symptoms --- p.8 / Chapter 2.2.2 --- Treatment of Toxoplasmosis --- p.10 / Chapter 2.2.2.1 --- Antitoxoplasma Drugs --- p.10 / Chapter 2.2.2.2 --- Toxoplasma Vaccines --- p.12 / Chapter 2.3 --- Major T. gondii Surface Antigen - P30 --- p.16 / Chapter 2.4 --- Plants as Bioreactors --- p.19 / Chapter 2.4.1 --- Advantages of Plant Bioreactors --- p.19 / Chapter 2.4.2 --- Plant-based Vaccines --- p.20 / Chapter 2.4.2.1 --- VP2 Capsid Protein of Mink Enteritis Virus --- p.21 / Chapter 2.4.2.2 --- Hepatitis B Surface Antigen --- p.21 / Chapter 2.4.2.3 --- Norwalk Virus Capsid Protein --- p.22 / Chapter 2.5 --- Tobacco Expression System --- p.23 / Chapter 2.5.1 --- Transformation Methods --- p.23 / Chapter 2.5.1.1 --- Agrobacterium-mediated Transformation --- p.23 / Chapter 2.5.1.2 --- Direct DNA Uptake --- p.24 / Chapter 2.6 --- Phaseolin and Its Regulatory Sequences --- p.26 / Chapter CHAPTER 3 --- Expression of P30 in Transgenic Tobacco --- p.28 / Chapter 3.1 --- Introduction --- p.28 / Chapter 3.2 --- Materials and Methods --- p.29 / Chapter 3.2.1 --- Chemicals --- p.29 / Chapter 3.2.2 --- Oligos: Primers and Adapters --- p.29 / Chapter 3.2.3 --- Plant Materials --- p.31 / Chapter 3.2.4 --- Bacterial Strains --- p.31 / Chapter 3.2.5 --- Construction of Chimeric Genes --- p.31 / Chapter 3.2.5.1 --- Modification of pET-ASP30ΔPI --- p.32 / Chapter 3.2.5.2 --- Cloning of P30 into Vectors with Different Promoters --- p.38 / Chapter 3.2.5.2.1 --- Cloning ofP30 into Vector with CaMV 35S Promoter --- p.38 / Chapter 3.2.5.2.2 --- Cloning of P30 into Vector with Maize Ubiquitin 1 Promoter --- p.38 / Chapter 3.2.5.2.3 --- Cloning of P30 into Vector with Phaseolin Promoter --- p.38 / Chapter 3.2.5.2.4 --- Cloning of P30 into Vector with Phaseolin Promoter and Phaseolin SP --- p.39 / Chapter 3.2.5.3 --- Cloning of P30 into Agrobacterium Binary Vector pBI121 --- p.44 / Chapter 3.2.6 --- Transformation of Agrobacterium by Electroporation --- p.49 / Chapter 3.2.7 --- "Transformation, Selection and Regeneration of Tobacco " --- p.50 / Chapter 3.2.8 --- GUS Assay --- p.51 / Chapter 3.2.9 --- Synthesis of Single-stranded DIG-labeled DNA Probe --- p.51 / Chapter 3.2.10 --- Extraction of Genomic DNA from Leaves --- p.52 / Chapter 3.2.11 --- PCR of Genomic DNA with P30 Specific Primers --- p.53 / Chapter 3.2.12 --- Southern Blot Analysis of Genomic DNA --- p.53 / Chapter 3.2.13 --- Extraction of Total RNA from Leaves or Developing Seeds --- p.54 / Chapter 3.2.14 --- Reverse Transcription-Polymerase Chain Reaction of Total RNA --- p.55 / Chapter 3.2.15 --- Sequencing of RT-PCR Product --- p.56 / Chapter 3.2.16 --- Northern Blot Analysis of Total RNA --- p.56 / Chapter 3.2.17 --- Extraction of Total Protein from Leaves or Mature Seeds --- p.57 / Chapter 3.2.18 --- Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.58 / Chapter 3.2.19 --- Purification of 6xHis-tagged Proteins --- p.58 / Chapter 3.2.20 --- Western Blot Analysis of Total Protein --- p.59 / Chapter 3.2.21 --- In vitro Transcription and Translation --- p.60 / Chapter 3.2.21.1 --- Construction of Transcription Vector Containing Chimeric P30 Gene --- p.60 / Chapter 3.2.21.2 --- In vitro Transcription --- p.60 / Chapter 3.2.21.3 --- In vitro Translation --- p.60 / Chapter 3.3 --- Results --- p.65 / Chapter 3.3.1 --- Construction of Chimeric P30 Genes --- p.65 / Chapter 3.3.2 --- "Tobacco Transformation, Selection and Regeneration " --- p.65 / Chapter 3.3.3 --- Detection of GUS Activity --- p.67 / Chapter 3.3.4 --- Detection of P30 Gene in Transgenic Plants --- p.69 / Chapter 3.3.4.1 --- PCR of Genomic DNA --- p.69 / Chapter 3.3.4.2 --- Southern Blot Analysis --- p.72 / Chapter 3.3.5 --- Detection of P30 Transcript in Transgenic Plants --- p.75 / Chapter 3.3.5.1 --- RT-PCR --- p.75 / Chapter 3.3.5.2 --- Sequencing of RT-PCR Product --- p.79 / Chapter 3.3.5.3 --- Northern Blot Analysis --- p.79 / Chapter 3.3.6 --- Detection of P30 Protein in Transgenic Plants --- p.83 / Chapter 3.3.6.1 --- Western Blot Analysis of Total Protein and Ni-NTA Purified Proteins --- p.83 / Chapter 3.3.7 --- In vitro Transcription and Translation --- p.92 / Chapter 3.3.7.1 --- In vitro Transcription --- p.92 / Chapter 3.3.7.2 --- In vitro Translation --- p.92 / Chapter CHAPTER 4 --- Discussion --- p.97 / Chapter 4.1 --- General Conclusion --- p.97 / Chapter 4.2 --- Further Speculations and Investigations --- p.100 / Chapter 4.2.1 --- Other Protein Detection Procedures --- p.100 / Chapter 4.2.2 --- In vitro Transcription and Translation --- p.100 / Chapter 4.2.3 --- Gene Silencing at Transcription and/or Post-transcription Levels --- p.101 / Chapter 4.2.4 --- Gene Silencing at Translation and/or Post-translation Levels --- p.102 / Chapter (A) --- AUG Context Sequence --- p.102 / Chapter (B) --- Codon Usage --- p.103 / Chapter (C) --- N-end Rule --- p.107 / Chapter (D) --- Phaseolin Sorting Signal --- p.107 / Chapter CHAPTER 5 --- Future Perspectives --- p.109 / Chapter 5.1 --- Codon Modification of the P30 Gene --- p.110 / Chapter 5.2 --- Fusion of the P30 Gene with the LRP Gene --- p.117 / Chapter CHAPTER 6 --- Conclusion --- p.118 / References --- p.119
3

Plant as bioreactor: transgenic expression of malaria surface antigen in plants.

January 2001 (has links)
by Ng Wang Kit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 131-139). / Abstracts in English and Chinese. / Acknowledgements --- p.iii / Abstract --- p.v / List of Tables --- p.ix / List of Figures --- p.x / List of Abbreviations --- p.xiii / Table of Contents --- p.xv / Chapter Chapter 1: --- General Introduction --- p.1 / Chapter Chapter 2: --- Literature Review --- p.3 / Chapter 2.1 --- Malaria --- p.3 / Chapter 2.1.1 --- Global picture --- p.3 / Chapter 2.1.2 --- Malaria mechanics --- p.4 / Chapter 2.1.3 --- Life cycle of malaria parasite --- p.4 / Chapter 2.2 --- Treatment of malaria ´ؤ malaria drugs --- p.5 / Chapter 2.2.1 --- Antimalarial drugs --- p.5 / Chapter 2.2.2 --- Drug resistance --- p.6 / Chapter 2.3 --- Treatment of malaria - malarial vaccines --- p.7 / Chapter 2.3.1 --- Malarial vaccine developments --- p.7 / Chapter 2.3.2 --- Transmission blocking vaccines --- p.7 / Chapter 2.3.3 --- Pre-erythrocytic vaccines --- p.9 / Chapter 2.3.4 --- Blood stage vaccines --- p.10 / Chapter 2.4 --- The major merozoite protein - gpl95 --- p.11 / Chapter 2.5 --- Plants as bioreactors --- p.12 / Chapter 2.5.1 --- Products of transgenic plants --- p.13 / Chapter 2.6 --- Transgenic plants for production of subunit vaccines --- p.14 / Chapter 2.6.1 --- Norwalk virus capsid protein production --- p.15 / Chapter 2.6.2 --- Hepatitis B surface antigen production --- p.15 / Chapter 2.7 --- Tobacco and Arabidopsis as model plants --- p.16 / Chapter 2.7.1 --- Arabidopsis --- p.16 / Chapter 2.7.2 --- Tobacco --- p.17 / Chapter 2.8 --- Transformation methods --- p.17 / Chapter 2.8.1 --- Direct DNA uptake --- p.17 / Chapter 2.8.1.1 --- Plant protoplast transformation --- p.17 / Chapter 2.8.1.2 --- Biolistic transformation --- p.18 / Chapter 2.8.2 --- Agrobacterium-mediated transformation --- p.18 / Chapter 2.8.2.1 --- Leaf-disc technique --- p.18 / Chapter 2.8.2.2 --- In planta transformation --- p.19 / Chapter 2.9 --- Phaseolin --- p.20 / Chapter 2.10 --- Detection and purification of recombinant products - Histidine tag --- p.21 / Chapter 2.11 --- Aims of study and hypotheses --- p.22 / Chapter Chapter 3: --- Materials and Methods --- p.24 / Chapter 3.1 --- Introduction --- p.24 / Chapter 3.2 --- Chemicals --- p.24 / Chapter 3.3 --- Expression in tobacco system --- p.24 / Chapter 3.3.1 --- Plant materials --- p.24 / Chapter 3.3.2 --- Bacterial strains --- p.25 / Chapter 3.3.3 --- Chimeric gene construction for tobacco transformation --- p.25 / Chapter 3.3.3.1 --- The cloning of pTZPhasp/flgp42-His/Phast (F1) --- p.26 / Chapter 3.3.3.2 --- The cloning of pBKPhasp-sp/flgp42-His/Phast (P9) --- p.30 / Chapter 3.3.3.3 --- The cloning of pHM2Ubip/flgp42-His/Nost (C2) --- p.30 / Chapter 3.3.4 --- Confirmation of sequence fidelity of chimeric gene by DNA sequencing --- p.33 / Chapter 3.3.5 --- Cloning of chimeric gene into binary vector --- p.34 / Chapter 3.3.6 --- Triparental mating of Agrobacterium tumefaciens LBA4404/pAL4404 --- p.35 / Chapter 3.3.7 --- Tobacco transformation and regeneration --- p.36 / Chapter 3.3.8 --- GUS assay --- p.37 / Chapter 3.3.9 --- Genomic DNA isolation --- p.37 / Chapter 3.3.10 --- PCR amplification and detection of transgene --- p.38 / Chapter 3.3.11 --- Southern blot analysis --- p.38 / Chapter 3.3.12 --- Total seeds RNA isolation --- p.39 / Chapter 3.3.13 --- RT-PCR --- p.39 / Chapter 3.3.14 --- Northern blot analysis --- p.40 / Chapter 3.3.15 --- Protein extraction and SDS-PAGE --- p.40 / Chapter 3.3.16 --- Western blot analysis --- p.41 / Chapter 3.4 --- Expression in Arabidopsis system --- p.42 / Chapter 3.4.1 --- Plant materials --- p.42 / Chapter 3.4.2 --- Bacterial strains --- p.42 / Chapter 3.4.3 --- Chimeric gene construction --- p.42 / Chapter 3.4.3.1 --- The cloning of pBKPhasp-sp/His/EK/p42/Phast (DH) --- p.43 / Chapter 3.4.3.2 --- The cloning of pTZPhaSp/His/EK/p42/Phast (EH) --- p.45 / Chapter 3.4.3.3 --- The cloning of pBKPhasp-sp/His/EK/flgp42/Phast (DHF) and pTZPhasp/His/EK/flgp42/Phast (EHF) --- p.45 / Chapter 3.4.4 --- Confirmation of sequence fidelity of chimeric genes --- p.45 / Chapter 3.4.5 --- Cloning of chimeric gene into Agrobacterium binary vector --- p.49 / Chapter 3.4.6 --- Transformation of Agrobacterium tumefaciens GV3101/pMP90 with chimeric gene constructs --- p.49 / Chapter 3.4.7 --- Arabidopsis Transformation --- p.49 / Chapter 3.4.8 --- Vacuum infiltration transformation --- p.50 / Chapter 3.4.9 --- Selection of successful transformants --- p.51 / Chapter 3.4.10 --- Selection for homozygous plants with single gene insertion --- p.51 / Chapter 3.4.11 --- GUS assay --- p.52 / Chapter 3.4.12 --- Genomic DNA isolation --- p.52 / Chapter 3.4.13 --- PCR amplification and detection of transgenes --- p.52 / Chapter 3.4.14 --- Southern Blot analysis --- p.52 / Chapter 3.4.15 --- Total siliques RNA isolation --- p.53 / Chapter 3.4.16 --- RT-PCR --- p.53 / Chapter 3.4.17 --- Northern blot analysis --- p.53 / Chapter 3.4.17 --- Protein extraction and SDS-PAGE --- p.54 / Chapter 3.4.18 --- Western blot analysis --- p.54 / Chapter 3.5 --- In vitro transcription and translation --- p.54 / Chapter 3.5.1 --- In vitro transcription --- p.54 / Chapter 3.5.2 --- In vitro translation --- p.55 / Chapter 3.6 --- Particle bombardment of GUS fusion gene --- p.56 / Chapter 3.6.1 --- Chimeric gene constructs --- p.56 / Chapter 3.6.2 --- Particle bombardment using snow bean cotyledon --- p.61 / Chapter Chapter 4: --- Results --- p.63 / Chapter 4.1 --- Tobacco system --- p.63 / Chapter 4.1.1 --- Chimeric gene constructs --- p.63 / Chapter 4.1.2 --- Tobacco transformation and regeneration --- p.65 / Chapter 4.1.3 --- GUS activity assay --- p.67 / Chapter 4.1.4 --- Molecular analysis of transgene integration --- p.68 / Chapter 4.1.4.1 --- Genomic DNA extraction and PCR --- p.68 / Chapter 4.1.4.2 --- Southern blot analysis --- p.70 / Chapter 4.1.5 --- Molecular analysis of transgene expression --- p.72 / Chapter 4.1.5.1 --- Total RNA isolation and RT-PCR --- p.72 / Chapter 4.1.5.2 --- Northern blot analysis --- p.75 / Chapter 4.1.6 --- Genomic PCR to confirm whole gene transfer --- p.76 / Chapter 4.1.7 --- Biochemical analysis of transgene expression --- p.78 / Chapter 4.1.7.1 --- Protein extraction and SDS-PAGE --- p.78 / Chapter 4.1.7.2 --- Western blot analysis --- p.78 / Chapter 4.2 --- Arabidopsis system --- p.83 / Chapter 4.2.1 --- Chimeric gene constructs --- p.83 / Chapter 4.2.2 --- Arabidopsis transformation and selection --- p.85 / Chapter 4.2.3 --- Selection of transgenic plants --- p.87 / Chapter 4.2.4 --- Assay of GUS activity --- p.91 / Chapter 4.2.5 --- Molecular analysis of transgene integration --- p.92 / Chapter 4.2.5.1 --- Genomic DNA extraction and PCR --- p.92 / Chapter 4.2.5.2 --- Southern blot analysis --- p.96 / Chapter 4.2.6 --- Molecular analysis of transgene expression --- p.99 / Chapter 4.2.6.1 --- Total RNA isolation and RT-PCR --- p.99 / Chapter 4.2.6.2 --- Northern blot analysis --- p.106 / Chapter 4.2.7 --- Genomic PCR for confirmation of whole gene transfer --- p.107 / Chapter 4.2.8 --- Biochemical analysis of transgene expression --- p.108 / Chapter 4.2.8.1 --- Protein extraction and SDS-PAGE --- p.108 / Chapter 4.2.8.2 --- Western blot analysis --- p.108 / Chapter 4.3 --- In vitro transcription and translation --- p.112 / Chapter 4.4 --- Particle bombardment of p42/ GUS fusion gene --- p.115 / Chapter Chapter 5: --- Discussion and Future perspectives --- p.117 / Chapter 5.1 --- Failure in detecting transgene expression --- p.117 / Chapter 5.2 --- Poor transgene expression --- p.120 / Chapter 5.2.1 --- Bacillus thuringiensis toxin and green fluorescent protein --- p.120 / Chapter 5.2.2 --- AT-richness --- p.121 / Chapter 5.2.3 --- Deleterious sequence - AUUUA --- p.123 / Chapter 5.2.4 --- Presence of AAUAAA or AAUAAA-like motifs --- p.125 / Chapter 5.2.5 --- Codon usage --- p.126 / Chapter 5.3 --- Future perspectives --- p.127 / Chapter Chapter 6: --- Conclusion --- p.129 / References --- p.131

Page generated in 0.0712 seconds