• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • Tagged with
  • 23
  • 9
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Positronium formation at surfaces and studies towards the production of low energy antihydrogen

Cassidy, David Barry January 1999 (has links)
No description available.
2

Antimatter chemistry

Mant, Barry Peter January 2016 (has links)
This thesis concerns the theoretical study of the low-energy interaction of antihydrogen atoms (¯H) with hydrogen molecules and antiprotons (p¯) with hydrogen molecular ions. Both systems are of interest to experiments currently under way at CERN aiming to trap and study antihydrogen atoms. To date limited work has been carried out on these systems. Only four papers on the ¯H-H2 system have been published and so far only semi-classical results have been published for p¯-H+ 2 . For both systems potential energy surfaces are constructed by fitting analytical functions to ab initio calculated energies. A combination of a neural network and suitable long-range asymptotic functions are used to fit the surfaces of both systems. The resulting surfaces are more accurate than those of previous work and should be useful for further studies. Quantum mechanical scattering calculations are carried out using the S-matrix Kohn variational method. It is shown that basis sets which are effective for normal chemical systems are not suitable for mixed matter/antimatter interactions. Instead, a basis set of multidimensional Gaussian functions, tailored to the potential, is used to converge the scattering calculations. For ¯H-H2 scattering the diatomic is approximated as a rigid rotor. Elastic and rotationally inelastic scattering calculations are presented. Hadronic annihilation calculations are also presented along with the first calculation of leptonic annihilation cross sections for this system. Scattering calculations for the p¯-H+ 2 system are carried out with approximations made to the potential. The strength of the interaction between the antiproton and hydrogen molecular ion, which at long range becomes Coulombic, requires large basis sets. The necessary modifications required to use the Kohn method with a Coulomb potential are discussed. A preliminary calculation of Pn-H elastic scattering is also carried out.
3

The Anticoincidence Shield of the PAMELA Satellite Experiment

Orsi, Silvio January 2004 (has links)
<p>The PAMELA space experiment is scheduled for launch towards the end of 2004 on-board a Russian Resurs DK1 satellite, orbiting Earth at an altitude of 300– 600 km. The main scientific goal is a study of the antimatter component of the cosmic radiation. The semipolar orbit (70.4◦) allows PAMELA to investigate a wide range of energies for antiprotons (80 MeV–190 GeV) and positrons (50 MeV– 270 GeV). Three years of data taking will provide unprecedented statistics in this energy range and will set the upper limit for the ratio He/He below 10−7. PAMELA is built around a permanent magnet silicon spectrometer, surrounded by a plastic scintillator anticoincidence shield built at KTH. The anticounter scintillators are used to aid in the rejection of background from particles not cleanly entering the acceptance of the tracker. Information from the anticounter system will be included as a veto in a second level trigger, to exclude the acquisition of events generated by false triggers.</p><p>An LED-based monitoring system has been developed for the anticounter system. The LEDs mimic the light signal produced in the scintillator by an ionising particle. This allows the functionality of the AC system to be verified in-orbit. The development and testing of the monitoring system are presented and comparisons have been made with independent radioactive source-based calibration methods. The anticounter system has also been extensively tested with cosmic rays and particle beams. Most of these tests have been performed with the anticounters integrated with the other PAMELA subdetectors in a flight-like configuration.</p>
4

Axialisation of particles in a Penning-type trap by the application of a rotating dipole electric field and its application to positron accumulation

Isaac, Christopher Aled January 2010 (has links)
No description available.
5

Radiation damage studies in the LHCb VELO detector and measurement of the flavour-specific asymmetry in semileptonic B-decays

Webber, Adam Dane January 2013 (has links)
This thesis presents several studies of data collected at the LHCb detector during its first two years of operation. A detector upgrade study is first presented, using simulated events at an increased luminosity. A second study involves radiation damage to the silicon sensors of the LHCb Vertex Locator. During 2010 and 2011the silicon sensors were exposed to a range of fluences, with sensors in the mostactive regions exposed to fluences of up to approximately 45x10^12 1MeV neutron equivalent (1MeV neq). The first observation of n+-on-n sensor type inversion at the Large Hadron Collider is reported, occurring at a fluence of around (10-15)x10^12 of 1MeV neq. The effective depletion voltages of the only n+-on-p sensors in use at the Large Hadron Collider have also been studied, with decreases of around 25V observed after initial irradiation. Following this, the effective depletion voltage inn+-on-p type sensors is observed to increase at a comparable rate to type inverted n+-on-n type sensors. A reduction in the charge collection efficiency due to an unexpected effect involving the sensor readout lines is also observed. A third study relates to CP violation in neutral B-meson mixing, by the measurement of the flavour-specific asymmetry. In the Standard Model, CP violation from this source is expected to be of order 10^-4. Any measured enhancement of this would be a strong indication of new physics. The DØ collaboration has measured the flavour specific asymmetry from B0 and B0s mixing, and found it to be inconsistent with the Standard Model at a confidence level of 3.9 standard deviations, thus motivating an independent measurement from the LHCb experiment. Using the full 2011 LHCb dataset, corresponding to 1.0 fb^-1 of recorded luminosity, the B0s-meson component of the flavour-specific asymmetry is measured to be afs_s = (-0.12 +/- 0.48 +/- 0.34)%, where the first uncertainty is statistical and the second is systematic. This is the single most accurate measurement of afs_s, and is consistent with both the DØ measurement and the Standard Model prediction.
6

The Anticoincidence Shield of the PAMELA Satellite Experiment

Orsi, Silvio January 2004 (has links)
The PAMELA space experiment is scheduled for launch towards the end of 2004 on-board a Russian Resurs DK1 satellite, orbiting Earth at an altitude of 300– 600 km. The main scientific goal is a study of the antimatter component of the cosmic radiation. The semipolar orbit (70.4◦) allows PAMELA to investigate a wide range of energies for antiprotons (80 MeV–190 GeV) and positrons (50 MeV– 270 GeV). Three years of data taking will provide unprecedented statistics in this energy range and will set the upper limit for the ratio He/He below 10−7. PAMELA is built around a permanent magnet silicon spectrometer, surrounded by a plastic scintillator anticoincidence shield built at KTH. The anticounter scintillators are used to aid in the rejection of background from particles not cleanly entering the acceptance of the tracker. Information from the anticounter system will be included as a veto in a second level trigger, to exclude the acquisition of events generated by false triggers. An LED-based monitoring system has been developed for the anticounter system. The LEDs mimic the light signal produced in the scintillator by an ionising particle. This allows the functionality of the AC system to be verified in-orbit. The development and testing of the monitoring system are presented and comparisons have been made with independent radioactive source-based calibration methods. The anticounter system has also been extensively tested with cosmic rays and particle beams. Most of these tests have been performed with the anticounters integrated with the other PAMELA subdetectors in a flight-like configuration.
7

Studies of Charged Particle Dynamics for Antihydrogen Synthesis

Correa, Jose Ricardo 12 1900 (has links)
Synthesis and capture of antihydrogen in controlled laboratory conditions will enable precise studies of neutral antimatter. The work presented deals with some of the physics pertinent to manipulating charged antiparticles in order to create neutral antimatter, and may be applicable to other scenarios of plasma confinement and charged particle interaction. The topics covered include the electrostatic confinement of a reflecting ion beam and the transverse confinement of an ion beam in a purely electrostatic configuration; the charge sign effect on the Coulomb logarithm for a two component (e.g., antihydrogen) plasma in a Penning trap as well as the collisional scattering for binary Coulomb interactions that are cut off at a distance different than the Debye length; and the formation of magnetobound positronium and protonium.
8

Antiprotons in the Cosmic Radiation Measured by the CAPRICE98 Experiment

Bergström, David January 2001 (has links)
No description available.
9

Antiprotons in the Cosmic Radiation Measured by the CAPRICE98 Experiment

Bergström, David January 2001 (has links)
No description available.
10

Artificially Structured Boundary for Control and Confinement of Beams and Plasmas

Hedlof, Ryan 05 1900 (has links)
An artificially structured boundary (ASB) produces a short-range, static electromagnetic field that can reflect charged particles. In the work presented, an ASB is considered to consist of a spatially periodic arrangement of electrostatically plugged magnetic cusps. When used to create an enclosed volume, an ASB may confine a non-neutral plasma that is effectively free of applied electromagnetic fields, provided the spatial period of the ASB-applied field is much smaller than any one dimension of the confinement volume. As envisioned, a non-neutral positron plasma could be confined by an ASB along its edge, and the space-charge of the positron plasma would serve to confine an antiproton plasma. If the conditions of the two-species plasma are suitable, production of antihydrogen via three-body recombination for antimatter gravity studies may be possible. A classical trajectory Monte Carlo (CTMC) simulation suite has been developed in C++ to efficiently simulate charged particle interactions with user defined electromagnetic fields. The code has been used to explore several ASB configurations, and a concept for a cylindrically symmetric ASB trap that employs a picket-fence magnetic field has been developed. Particle-in-cell (PIC) modeling has been utilized to investigate the confinement of non-neutral and partially neutralized positron plasmas in the trap.

Page generated in 0.0669 seconds