• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of metal and metal oxide nanoparticles against biofilms

Tejpal, Jyoti January 2016 (has links)
The persistence of biofilms in hospital settings are associated with Healthcare Associated Infections (HCAI), causing increased morbidity, mortality and healthcare costs. The resistance of biofilms against commonly used hospital disinfectants has been well reported. Metal and metal oxide nanoparticles (NP) such as silver (Ag), copper (Cu), zinc oxide (ZnO) and copper oxide (CuO) exhibit antimicrobial properties against various pathogens. Methods: Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus in a Centre for Disease Control (CDC) biofilm reactor and a 96 well plate was compared. A three stage approach including Minimum Biofilm Reduction Concentration (MBRC), R2 values and log(10) reductions was used to assess the efficacy of Ag and ZnO NPs both alone and in combination against P. aeruginosa and S. aureus biofilms. Atomic Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM) was used to further assess the antimicrobial ability of the metal and metal oxide NPs. The prevention of P. aeruginosa and S. aureus adherence on Ag and ZnO thin film coating on silicon (Si) surfaces was also investigated, as well as icaC, ebpS and fnbB gene expression in S. aureus biofilms. Results: The CDC biofilm reactor demonstrated to be the most effective method for P. aeruginosa and S. aureus biofilm production in comparison to 96 well plates, with lower standard errors of the mean (SE) and higher replicability. Individual MBRC of ZnO and Ag NPs in suspension were 256 and 50 µg/ml for P. aeruginosa and 16 and 50 µg/ml for S. aureus respectively. The concentrations in combination were reduced by at least a half, with concentrations of 32/25 µg/ml of ZnO/Ag NPs in suspension resulting in a significant (p ≤0.05) reduction of 3.77 log(10) against P. aeruginosa biofilms and 8/12 µg/ml of ZnO/Ag NPs in suspension resulted in a 3.91 log(10) (p ≤0.05) against S. aureus biofilms. Both combinations showed an additive effect. Time point analysis confirmed that a 24 hour treatment is vital for any significant (p ≤0.05) antimicrobial activity. AAS data suggested that the Ag+ ions quenched Zn2+ ions, therefore the antimicrobial efficacy of the combination is mainly due to Ag+ ions. Damage of the biofilms from Ag and ZnO NPs was observed in the SEM imaging and energy dispersive X-ray (EDX) analysis confirmed the adherence of Zn and Ag within the biofilms. CLSM imaging showed dead (red) cells of P. aeruginosa and S. aureus biofilms throughout the depth of the biofilm. P. aeruginosa formation was reduced by 1.41 log(10) and 1.43 log(10) on Ag and ZnO thin film coatings respectively. For S. aureus, a reduction of 1.82 log(10) and 1.65 log(10) was obtained for Ag and ZnO coating respectively. Only low levels of ribonucleic acid (RNA) were achieved so no further gene analysis could occur. Conclusion: Reductions of ≥3 log(10) were observed for P. aeruginosa and S. aureus biofilm treatment with ZnO/Ag NP suspensions. It can be concluded that the ZnO/Ag NP suspensions had greater antimicrobial activity than Ag and ZnO coated surfaces owing to large concentrations of Ag+ and Zn2+ ions acting upon the biofilms. The slower release of ions from coated surfaces suggest an inadequate concentration of ions in the media, which are therefore unable to prevent biofilm formation as rapidly as NP suspensions, however provide a sustained release of ions over time. The results from this investigation propose that Ag and ZnO NPs in suspension could be a potential alternative to disinfectants for use in nosocomial environments against P. aeruginosa and S. aureus biofilms.
2

Characterizing the Impact of Low Shear Modeled Microgravity on Population Dynamics, Biofilm Formation and Silver Susceptibility of Microbial Consortia Isolated from International Space Station Potable Water

January 2019 (has links)
abstract: Understanding how microorganisms adapt and respond to the microgravity environment of spaceflight is important for the function and integrity of onboard life support systems, astronaut health and mission success. Microbial contamination of spacecraft Environmental Life Support Systems (ECLSS), including the potable water system, are well documented and have caused major disruption to spaceflight missions. The potable water system on the International Space Station (ISS) uses recycled wastewater purified by multiple processes so it is safe for astronaut consumption and personal hygiene. However, despite stringent antimicrobial treatments, multiple bacterial species and biofilms have been recovered from this potable water system. This finding raises concern for crew health risks, vehicle operations and ECLSS system integrity during exploration missions. These concerns are further heightened given that 1) potential pathogens have been isolated from the ISS potable water system, 2) the immune response of astronauts is blunted during spaceflight, 3) spaceflight induces unexpected alterations in microbial responses, including growth and biofilm formation, antimicrobial resistance, stress responses, and virulence, and 4) different microbial phenotypes are often observed between reductionistic pure cultures as compared to more complex multispecies co-cultures, the latter of which are more representative of natural environmental conditions. To advance the understanding of the impact of microgravity on microbial responses that could negatively impact spacecraft ECLSS systems and crew health, this study characterized a range of phenotypic profiles in both pure and co-cultures of bacterial isolates collected from the ISS potable water system between 2009 and 2014. Microbial responses profiled included population dynamics, resistance to silver, biofilm formation, and in vitro colonization of intestinal epithelial cells. Growth characteristics and antibiotic sensitivities for bacterial strains were evaluated to develop selective and/or differential media that allow for isolation of a pure culture from co-cultures, which was critical for the success of this study. Bacterial co-culture experiments were performed using dynamic Rotating Wall Vessel (RWV) bioreactors under spaceflight analogue (Low Shear Modeled Microgravity/LSMMG) and control conditions. These experiments indicated changes in fluid shear have minimal impact on strain recovery. The antimicrobial efficacy of silver on both sessile co-cultures, grown on 316L stainless steel coupons, and planktonic co-cultures showed that silver did not uniformly reduce the recovery of all strains; however, it had a stronger antimicrobial effect on biofilm cultures than planktonic cultures. The impact of silver on the ability of RWV cultured planktonic and biofilm bacterial co-cultures to colonize human intestinal epithelial cells showed that, those strains which were impacted by silver treatment, often increased adherence to the monolayer. Results from these studies provide insight into the dynamics of polymicrobial community interactions, biofilm formation and survival mechanisms of ISS potable water isolates, with potential application for future design of ECLSS systems for sustainable human space exploration. / Dissertation/Thesis / Masters Thesis Molecular and Cellular Biology 2019

Page generated in 0.0764 seconds