Spelling suggestions: "subject:"antineoplastic ethnopharmacology"" "subject:"antineoplastic etnopharmacology""
11 |
Topoisomerase II beta negatively modulates retinoic acid receptor alpha function : a novel mechanism of retinoic acid resistance in acute promyelocytic leukemiaMcNamara, Suzan. January 2008 (has links)
No description available.
|
12 |
Identification of a potent anti-invasive molecule through mixed targeting designSaade, Khalil. January 2008 (has links)
No description available.
|
13 |
In vivo activation of the hypoxia-targeted cytotoxin AQ4N in human tumor xenograftsWilliams, K. J., Albertella, M. R., Fitzpatrick, B., Loadman, P. M., Shnyder, S. D., Chinje, E. C., Telfer, B. A., Dunk, C. R., Harris, P. A., Stratford, I. J. January 2009 (has links)
AQ4N (banoxantrone) is a prodrug that, under hypoxic conditions, is enzymatically converted to a cytotoxic DNA-binding agent, AQ4. Incorporation of AQ4N into conventional chemoradiation protocols therefore targets both oxygenated and hypoxic regions of tumors, and potentially will increase the effectiveness of therapy. This current pharmacodynamic and efficacy study was designed to quantify tumor exposure to AQ4 following treatment with AQ4N, and to relate exposure to outcome of treatment. A single dose of 60 mg/kg AQ4N enhanced the response of RT112 (bladder) and Calu-6 (lung) xenografts to treatment with cisplatin and radiation therapy. AQ4N was also given to separate cohorts of tumor-bearing mice 24 hours before tumor excision for subsequent analysis of metabolite levels. AQ4 was detected by high performance liquid chromatography/mass spectrometry in all treated samples of RT112 and Calu-6 tumors at mean concentrations of 0.23 and 1.07 microg/g, respectively. These concentrations are comparable with those shown to be cytotoxic in vitro. AQ4-related nuclear fluorescence was observed in all treated tumors by confocal microscopy, which correlated with the high performance liquid chromatography/mass spectrometry data. The presence of the hypoxic marker Glut-1 was shown by immunohistochemistry in both Calu-6 tumors and RT112 tumors, and colocalization of AQ4 fluorescence and Glut-1 staining strongly suggested that AQ4N was activated in these putatively hypoxic areas. This is the first demonstration that AQ4N will increase the efficacy of chemoradiotherapy in preclinical models; the intratumoral levels of AQ4 found in this study are comparable with tumor AQ4 levels found in a recent phase I clinical study, which suggests that these levels could be potentially therapeutic.
|
14 |
Synthesis, biological evaluation and molecular docking studies of novel indole- and benzofuran-chalcone and benzofuran-quinazoline hybrids as anticancer agentsMaluleka, Marole Maria 07 1900 (has links)
Text in English / Specially prepared 2-amino-5-bromo-3-iodoacetophenone and 5-bromo-2-hydroxy-3
iodoacetophenone were subjected to Claisen-Schmidt aldol condensation with benzaldehyde derivatives followed by sequential and/or one-pot palladium catalyzed Sonogashira cross coupling and heteroannulation of the 3-alkynylated intermediates to afford indole-chalcones and benzofuran-chalcones, respectively. The indole-chalcones derivatives were, in turn, subjected to trifluoroacetic anhydride in tetrahydrofuran under reflux to afford the corresponding 3-trifluoroacetyl substituted indole-chalcone derivatives. The coupling constant values (Jtrans) of about 16.0 Hz for the chalcone derivatives corresponding to the vinylic protons confirmed the trans geometry of the α,β-unsaturated carbonyl framework in all the cases. Their trans geometry of the chalcone derivatives was further confirmed by single crystal X-ray diffraction (XRD) analyses. Further structural elaboration of the ambident electrophilic α,β unsaturated carbonyl (chalcone) moiety of the indole-chalcones and the analogous benzofuran chalcones with 2-aminothiophenol afforded novel benzothiezapine-appended indole and benzofuran hybrids, respectively. Sonogashira cross-coupling of 5-bromo-2-hydroxy-3 iodoacetophenone with terminal acetylenes followed by heteroannulation of the intermediate 3-alkynylated 5-bromo-2-hydroxyacetophenones afforded the corresponding 7-acetyl-2-aryl-5-bromobenzofurans in a single-pot operation. The oximes derived from the 7-acetyl–substituted 2-aryl-5-bromobenzofurans were subjected to Beckmann rearrangement with triflic
acid in acetonitrile under reflux. We isolated the corresponding 7-amino-2-aryl-5
bromobenzofuran derivatives formed from hydrolysis in situ of the intermediate 7-acetamide 2-aryl-5-bromobenzofurans. Amino-dechlorination of the 4-chloroquinazoline derivatives with the 7-aminobenzofurans afforded novel benzofuran 4-aminoquinazoline hybrids. The prepared compounds were characterized using a combination of nuclear magnetic resonance (1H-NMR & 13C-NMR including 19F-NMR), infrared (IR) and mass spectroscopic techniques complemented with single crystal X-ray diffraction (XRD) analyses and/or density functional (DFT) method.
The benzofuran-chalcone 203a–y derivatives were evaluated for anti-growth effect against the breast cancer (MCF-7) cell line by the MTT cell viability assay. Their mode of cancer cell death (apoptosis versus necrosis) was detected by Annexin V-Cy3 SYTOX staining and caspase-3 activation. The most cytotoxic compounds 203i and 203o were also evaluated for potential to inhibit tubulin polymerization and/or epidermal growth factor receptor-tyrosine kinase (EGFR-TK) phosphorylation. The experimental results were complemented with theoretical data from molecular docking into ATP binding site of the EGFR and colchicine binding site of tubulin, respectively. The benzofuran–4-aminoquinazoline hybrids 215a–j, on the other hand, were evaluated for antiproliferative propeties in vitro against the human lung cancer (A549), epithelial colorectal adenocarcinoma (Caco-2) and hepatocellular carcinoma (C3A) cell lines. The benzofuran-aminoquinazoline hybrids were also evaluated for potential to induce apoptosis and for their capability to inhibit EGFR-TK phosphorylation complemented with molecular docking (in silico) into the ATP binding site of EGFR.
Mechanistic studies demonstrated that the benzofuran-appended aminoquinazoline hybrids 215d and 215j induced apoptosis via activation of caspase-3 pathway. Moreover, compounds 215d and 215j exhibited significant and moderate inhibitory effects against EGFR (IC50 = 29.3 nM and 61.5 nM, respectively) when compared to Gefitinib (IC50 = 33.1 nM). Molecular docking of compounds 215 into EGFR-TK active site suggested that they bind to the region of EGFR like Gefitinib does. / Chemistry / D. Phil. (Chemistry)
|
Page generated in 0.0741 seconds