• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discorhabdin C 3-aza analogs and other potential anticancer and anti-HIV agents : synthesis, characterization and biological evaluation

Samaniego, Walter Numas 05 1900 (has links)
No description available.
2

Antioxidant and antiproliferative activities of flower tea extracts.

January 2007 (has links)
Leung, Yu Tim. / Thesis submitted in: November 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 103-128). / Abstracts in English and Chinese. / Thesis Committee --- p.i / Acknowledgements --- p.ii / Abstract --- p.iii / 摘要 --- p.iv / Table of Contents --- p.v / List of Tables --- p.ix / List of Figures --- p.x / Abbreviations --- p.xiii / Chapter 1. --- Introduction / Chapter 1.1 --- Flower herbal teas --- p.1 / Chapter 1.2 --- R. rugosa --- p.3 / Chapter 1.2.1 --- The phytochemistry of R. rugosa --- p.3 / Chapter 1.3 --- Secondary metabolites --- p.4 / Chapter 1.4 --- Classification of secondary metabolites --- p.6 / Chapter 1.5 --- Phenolic compounds --- p.6 / Chapter 1.5.1 --- Phenylpropanoid compounds --- p.6 / Chapter 1.5.2 --- Lignins --- p.7 / Chapter 1.5.3 --- Coumarins --- p.7 / Chapter 1.5.4 --- Stilbenes --- p.8 / Chapter 1.5.5 --- Tannins --- p.8 / Chapter 1.5.6 --- Flavonoids --- p.9 / Chapter 1.6 --- Oxidative Stress --- p.13 / Chapter 1.6.1 --- Diseases related to ROS --- p.13 / Chapter 1.6.2 --- Significant chemical or biochemical conversion of ROS --- p.14 / Chapter 1.6.3 --- Sources of ROS --- p.15 / Chapter 1.7 --- Natural dietary antioxidants --- p.15 / Chapter 1.7.1 --- Vitamin C --- p.15 / Chapter 1.7.2 --- Vitamin E --- p.16 / Chapter 1.7.3 --- Carotenoids --- p.16 / Chapter 1.7.4 --- Phenolic compounds --- p.16 / Chapter 1.8 --- Cancinogenesis --- p.17 / Chapter 1.9 --- Cell cycle --- p.18 / Chapter 1.9.1 --- Cell cycle of eukaryotic cells --- p.18 / Chapter 1.9.2 --- Checkpoints of cell cycle --- p.18 / Chapter 1.10 --- Cancer cell lines --- p.19 / Chapter 1.11 --- The growth phases of cancer cell lines --- p.20 / Chapter 1.12 --- Antiproliferative effects of phenolic compounds --- p.21 / Chapter 1.13 --- Genotoxicity of phenolic compounds --- p.22 / Chapter 1.14 --- Objectives --- p.23 / Chapter 2. --- Methods and Materials / Chapter 2.1 --- Extraction of active substances --- p.40 / Chapter 2.2 --- Determination of antioxidant activities TEAC assay --- p.40 / Chapter 2.3 --- Determination of hydroxy 1 radical scavenging activity by the deoxyribose assay --- p.41 / Chapter 2.4 --- Determination of phenolic contents by Folin´ؤCiocalteu assay --- p.43 / Chapter 2.5 --- Determination of total flavonoid by aluminum chloride colorimetric method --- p.43 / Chapter 2.6 --- Determination of oxidative DNA damage by comet assay --- p.44 / Chapter 2.7 --- Cell lines propagation --- p.49 / Chapter 2.8 --- Determination of antiproliferative activities by MTT assay (colorimetric) --- p.50 / Chapter 2.9 --- Determination of antiproliferative activities by BrdU labeling assay --- p.52 / Chapter 2.10 --- Cell cycle analysis by flow cytometry --- p.55 / Chapter 2.11 --- Determination of genotoxicity by SOS chromotest --- p.57 / Chapter 3. --- Results / Chapter 3.1 --- Dermination of antioxidant activities by TEAC assay --- p.59 / Chapter 3.1.1 --- Trolox Standard Reference --- p.59 / Chapter 3.1.2 --- TEAC of the seven flower extracts --- p.59 / Chapter 3.2 --- Hydroxyl radical scavenging activity by deoxyribose assay --- p.60 / Chapter 3.3 --- Determination of phenolic contents by Folin´ؤCiocalteu assay --- p.60 / Chapter 3.4 --- Determination of total flavonoids by colorimetirc aluminium chloride assay --- p.61 / Chapter 3.5 --- "The Inter-correlation between the antioxidant activities, total phenolic and flavonoid contents of flower extraction powders" --- p.61 / Chapter 3.6 --- Determination of oxidative DNA damage by comet assay --- p.62 / Chapter 3.7 --- Determination of antiproliferative activities by MTT assay --- p.63 / Chapter 3.7.1 --- Antiporoliferative activities on HepG2 --- p.63 / Chapter 3.7.2 --- Antiproliferative activities on MCF7 --- p.63 / Chapter 3.7.3 --- IC50 of R. rugosa extract on both HepG2 and MCF7 --- p.64 / Chapter 3.8 --- "The Inter-correlation between antioxidant activities, total phenolic contents, flavonoid contents, and the antiproliferative activities of flower extraction Powders" --- p.64 / Chapter 3.9 --- Determination of DNA synthesis by BrdU labeling analysis --- p.65 / Chapter 3.10 --- Cell cycle analysis by flow cytometry --- p.65 / Chapter 3.11 --- Determination of genotoxicity by SOS chromotest --- p.66 / Chapter 4. --- Discussions / Chapter 4.1 --- Extraction method --- p.90 / Chapter 4.2 --- Comparison of TEAC of the dry flowers with other foods --- p.90 / Chapter 4.3 --- Correlation between ABTS+ and hydroxyl scavenging ability of flower extraction powder --- p.91 / Chapter 4.4 --- Comparison of phenolic contents of the fry flowers with other foods --- p.92 / Chapter 4.5 --- Correlation between total phenolic contents and flavonoid contents of flower Eextraction powders --- p.92 / Chapter 4.6 --- "Correlation between total phenolic, flavonoid content and antioxidant activities of flower extraction powders" --- p.93 / Chapter 4.7 --- Factors affecting the antioxidant power besides total phenolic contents --- p.94 / Chapter 4.8 --- Synergistic effect of phenolic compounds --- p.94 / Chapter 4.9 --- Toxicity of drinking flower herbal tea --- p.95 / Chapter 4.10 --- Recommended dose of flower herbal teas --- p.96 / Chapter 4.11 --- Antiproliferative activities of flower extracts by MTT assay --- p.97 / Chapter 4.12 --- Antiproliferation activities of flower extraction Powders by Brdu labeling assay --- p.98 / Chapter 4.13 --- Protective effects of flower extraction powder on oxidative DNA damage determined by comet assay --- p.99 / Chapter 4.14 --- Cell cycle analysis --- p.100 / Chapter 4.15 --- Further Studies --- p.101 / Chapter 5. --- Conclusion --- p.102 / Chapter 6. --- References --- p.103
3

Bioactivity of chemically synthesized goniotriol and its analogues.

January 1994 (has links)
Hung Sau Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 131-137). / Table of Contents --- p.1 / Acknowledgements --- p.V / Abbreviations --- p.VI / Aim of investigation --- p.IX / Abstract --- p.XI / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Cancer Chemotherapy --- p.2 / Chapter 1.2 --- Plants as sources of useful drugs --- p.4 / Chapter 1.3 --- Potent antitumor compounds found in Goniothalamus giganteus --- p.7 / Chapter 1.4 --- Brief introduction of GONIOTRIOL --- p.8 / Chapter 1.5 --- The study on the antitumor activities of the antitumor compounds --- p.9 / Chapter 1.6 --- Biochemistry study of the anticancer agents --- p.10 / Chapter Chapter 2 --- Materials and Methods --- p.18 / Chapter 2.1 --- Materials --- p.19 / Chapter 2.1.1 --- Animals --- p.19 / Chapter 2.1.2 --- "Buffers, Culture Media and Chemicals" --- p.19 / Chapter 2.1.3 --- Cell lines --- p.20 / Chapter 2.1.4 --- Dye solutions --- p.21 / Chapter 2.1.5 --- Reagents and buffers for Agarose gel --- p.21 / Chapter 2.1.6 --- Synthetic goniotriol and its derivatives --- p.21 / Chapter 2.2 --- Methods --- p.23 / Chapter 2.2.1 --- Radioactive Precursor Incorporation Assays --- p.23 / Chapter 2.2.2 --- MTT assay --- p.24 / Chapter 2.2.3 --- Neutral Red assay --- p.24 / Chapter 2.2.4 --- Isolation and preparation of cells --- p.25 / Chapter 2.2.5 --- Assay for the solvent effect --- p.25 / Chapter 2.2.6 --- Assay for the in vitro antitumor activity THC88 on different cell lines --- p.27 / Chapter 2.2.7 --- Assay of the effect of THC86 on solid sarcoma Scl80 in vivo --- p.28 / Chapter 2.2.8 --- Assay of the effect of THC86 on peritoneal Scl80 in vivo --- p.28 / Chapter 2.2.9 --- Assay of the effect of THC89 on peritoneal EAT in vivo --- p.28 / Chapter 2.2.10 --- Assay of synthetic compound (THC89 and THC87) on the mitogenic activity of spleen lymphocytes --- p.29 / Chapter 2.2.11 --- Assay of synthetic compound (THC87) on the proliferation of murine bone marrow cells from compound- treated mice --- p.30 / Chapter 2.2.12 --- "Assay of synthetic compounds (Ml, P51 and P1) on nonmalignant cell-line" --- p.31 / Chapter 2.2.13 --- Assay of antitumor activity of synthetic compound (THC86)on PU5-1.8 --- p.31 / Chapter 2.2.14 --- Assay of the cytocidal effect of THC86 --- p.32 / Chapter 2.2.15 --- "Assay on the effect of THC86 on the synthesis of DNA, RNA and protein" --- p.32 / Chapter 2.2.16 --- Direct DNA cleavage by THC86 --- p.33 / Chapter 2.2.17 --- DNA fragmentation assay / Chapter 2.2.18 --- Assay of the effect of the synthetic compound (THC86) on different growth fraction of the cells / Chapter 2.2.19 --- Mitosis Study / Chapter 2.2.20 --- Assay for the stability of the synthetic compounds / Chapter Chapter 3 --- Structure / activity relationship of the synthetic compounds --- p.36 / Chapter 3.1 --- Results --- p.37 / Chapter 3.1.1 --- In vitro antitumor activity of the synthetic compounds --- p.37 / Chapter 3.2 --- Discussion --- p.45 / Chapter Chapter 4 --- Antitumor activities of the synthetic compounds --- p.63 / Chapter 4.1 --- Results --- p.64 / Chapter 4.1.1 --- Solvent effect in the screening process --- p.64 / Chapter 4.1.2 --- The effect of the synthetic compound (THC88) on different cell lines --- p.69 / Chapter 4.1.3 --- In vivo anti-tumor activities of the synthetic compounds --- p.71 / Chapter 4.1.3a --- Effect of THC86 on solid sarcoma Sc180 in vivo --- p.71 / Chapter 4.1.3b --- Effect of THC86 on peritoneal Scl80 in vivo --- p.71 / Chapter 4.1.3c --- Effect of THC89 on peritoneal EAT in vivo --- p.72 / Chapter 4.1.4 --- Cytotoxic effect of the tested compounds on normal cells --- p.77 / Chapter 4.1.4a --- Cytotoxic effect of THC89 on normal splenocytes in vitro --- p.77 / Chapter 4.1.4b --- Effect of THC87 on the proliferation of splenocytes --- p.77 / Chapter 4.1.4c --- Effect of THC87 on the proliferation of murine bone marrow cells --- p.78 / Chapter 4.1.4d --- Cytotoxic effect on non-malignant cell-line BALB/c 3T3/A31 --- p.78 / Chapter 4.2 --- Discussion --- p.85 / Chapter Chapter 5 --- The study on the antiproliferative mechanisms of the synthetic compounds --- p.88 / Chapter 5.1 --- Results --- p.89 / Chapter 5.1.1 --- "Effect of the synthetic compounds on Cell Growth, DNA, RNA and Protein" --- p.89 / Chapter 5.1.1a --- Effect of THC86 on PU5-1.8 (macrophage-like tumor) --- p.89 / Chapter 5.1.1b --- Cytocidal effect of THC86 on EAT --- p.89 / Chapter 5.1.1c --- "Effect of the synthetic compounds on synthesis of DNA, RNA and protein" --- p.90 / Chapter 5.1.2 --- Study of the synthetic compounds on the interactions of DNA --- p.101 / Chapter 5.1.2a --- DNA cleavage assay --- p.101 / Chapter 5.1.2b --- DNA fragmentation assay --- p.101 / Chapter 5.1.3 --- Effect of the synthetic compounds on different growth fraction of the cells --- p.104 / Chapter 5.1.4 --- Mitosis study of the synthetic compounds --- p.106 / Chapter 5.1.5 --- Investigation of the stability of the synthetic compounds in culture medium --- p.112 / Chapter 5.2 --- Discussion --- p.117 / Chapter Chapter 6 --- General Discussion --- p.122 / References --- p.131

Page generated in 0.1073 seconds