• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cascade cyclizations & the schweinfurthins

Topczewski, Joseph John 01 December 2011 (has links)
Cancer is a serious family of disease that continues to cripple and claim those afflicted. For the last several decades, America has invested in a national program to alleviate cancer and cancer related suffering, ultimately seeking a cure. As part of this goal, the National Cancer Institute (NCI) has spent significant effort scouring the globe with the hope of finding naturally occurring compounds that can successfully combat cancer. Presently, this effort has uncovered many natural products with chemotherapeutic potential and many of the lead agents used in the fight against cancer are either natural products themselves or are compounds inspired by a natural product. This work describes one family of natural products uncovered by the NCI that is being explored for chemotherapeutic applications, namely the schweinfurthins. The schweinfurthins were isolated by the NCI; however the natural source, Macaranga schweinfurthii, did not provide these compounds in ample quantity to permit further study. The paucity of natural material indicated that a chemical synthesis of these compounds would be the most reliable method to provide meaningful amounts of schweinfurthins. The present work describes the chemical synthesis of four of the most potent schweinfurthins, describes the synthesis of numerous structural analogues, and details advances to the field of cascade cyclizations which makes their synthesis possible.

Page generated in 0.0789 seconds