Spelling suggestions: "subject:"antisense"" "subject:"antisenses""
31 |
Molecular studies on growth hormone receptor complementary DNA.January 1994 (has links)
by Lau Kwok Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 126-134). / Acknowledgments --- p.i / Abstract --- p.ii / Contents --- p.iv / Abbreviations --- p.ix / List of Figures --- p.x / List of Tables --- p.xii / List of Primers --- p.xiii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- A Brief Introduction of GH --- p.1 / Chapter 1.2 --- Growth Hormone Receptor (GHR) --- p.3 / Chapter 1.2.1 --- Tissue Distribution of GHR --- p.4 / Chapter 1.2.2 --- GHR Biosynthesis and Degradation --- p.7 / Chapter 1.2.3 --- Regulation of GHR level --- p.8 / Chapter 1.2.4 --- Structure of GHR --- p.10 / Chapter 1.2.5 --- Possible Signal Transduction Pathways of GHR --- p.13 / Chapter 1.2.6 --- GHR Related Dwarfism --- p.15 / Chapter 1.2.7 --- Significance of Cloning of GHR cDNA --- p.16 / Chapter 1.3 --- Objectives of the Present Study --- p.17 / Chapter Chapter 2 --- General Materials and Methods / Chapter 2.1 --- Ethanol Precipitation of DNA and RNA --- p.19 / Chapter 2.2 --- Spectrophotometric Determination of DNA and RNA --- p.19 / Chapter 2.3 --- Minipreparation of Plasmid DNA --- p.19 / Chapter 2.4 --- Preparation of Plasmid DNA using Magic´ёØ Minipreps DNA Purification Kit from Promega --- p.20 / Chapter 2.5 --- Preparation of Plasmid DNA using QIAGEN-tip100 --- p.21 / Chapter 2.6 --- Preparation and Transformation of Escherichia coli Competent Cell --- p.22 / Chapter 2.7 --- Rapid Screening for the Presence of Desired Plasmid --- p.23 / Chapter 2.8 --- Agarose Gel Electrophoresis --- p.23 / Chapter 2.9 --- Formaldehyde / Agarose Gel Electrophoresis --- p.24 / Chapter 2.10 --- Restriction Digestion of DNA --- p.25 / Chapter 2.11 --- Linearization and Dephosphorylation of Plasmid Vector --- p.25 / Chapter 2.12 --- Purification of DNA form Agarose Gel Using GENECLEAN II® Kit --- p.25 / Chapter 2.13 --- Purification of DNA by Phenol / Chloroform Extraction --- p.26 / Chapter 2.14 --- DNA Radiolabelling --- p.26 / Chapter 2.15 --- Spun-Column Chromatography --- p.27 / Chapter 2.16 --- Capillary Transfer of DNA/RNA to a Nylon Membrane --- p.27 / Chapter 2.16.1 --- DNA Denaturation --- p.27 / Chapter 2.16.2 --- Capillary Transfer --- p.28 / Chapter 2.17 --- Hybridization of DNA/RNA --- p.28 / Chapter 2.18 --- Autoradiography --- p.29 / Chapter 2.19 --- Preparation of Ribonuclease Free Reagents and Apparatus --- p.29 / Chapter 2.20 --- Total RNA Isolation --- p.30 / Chapter 2.21 --- mRNA Isolation --- p.31 / Chapter 2.22 --- First Strand cDNA Synthesis --- p.32 / Chapter 2.23 --- Polymerase Chain Reaction --- p.32 / Chapter 2.24 --- 3'End Modification of PCR Amplified DNA --- p.33 / Chapter 2.25 --- Ligation of DNA Fragments --- p.34 / Chapter 2.26 --- DNA Sequencing --- p.34 / Chapter 2.26.1 --- DNA Sequencing Reaction --- p.34 / Chapter 2.26.2 --- DNA Sequencing Electrophoresis --- p.35 / Chapter 2.27 --- Reagents and Buffers --- p.38 / Chapter 2.27.1 --- Media for Bacterial Culture --- p.38 / Chapter 2.27.2 --- Reagents for Preparation of Plasmid DNA --- p.38 / Chapter 2.27.3 --- Buffers for Agarose Gel Electrophoresis --- p.40 / Chapter 2.27.4 --- Buffers for Formaldehyde Gel Electrophoresis --- p.40 / Chapter 2.27.5 --- Buffers for Preparation Competent Cells --- p.41 / Chapter 2.27.6 --- Buffers for Capillary Transfer and Hybridization --- p.42 / Chapter 2.27.7 --- Buffers for Total RNA Extraction --- p.43 / Chapter 2.27.8 --- 10X CIP Buffers --- p.43 / Chapter 2.28 --- Size of DNA/RNA Molecular Weight Markers --- p.44 / Chapter Chapter 3 --- Molecular Studies on Chicken Growth Hormone Receptor / Chapter 3.1 --- Introduction --- p.45 / Chapter 3.2 --- Material and Methods --- p.46 / Chapter 3.2.1 --- Molecular Cloning of Chicken GHR cDNA by PCR --- p.46 / Chapter 3.2.1.1 --- Animals and Tissue --- p.46 / Chapter 3.2.1.2 --- Reverse Transcrbed-Polymerase Chain Reaction (RT-PCR) --- p.46 / Chapter 3.2.1.3 --- Subcloning of PCR Amplified DNA Fragments --- p.47 / Chapter 3.2.2 --- Ontogeny of GHR mRNA Expression in Chicken Liver and Brain --- p.48 / Chapter 3.2.2.1 --- Animals and Tissues --- p.48 / Chapter 3.2.2.2 --- Northern Analysis --- p.48 / Chapter 3.2.2.3 --- Quantification of GHR mRNA level --- p.49 / Chapter 3.2.3 --- Prokaryotic Expression of Chicken GHR cDNA --- p.49 / Chapter 3.2.3.1 --- Subcloning of Chicken GHR cDNA into a Prokaryotic Expression Vector --- p.49 / Chapter 3.2.3.2 --- Expression of Chicken GHR cDNAin E.coli --- p.50 / Chapter 3.2.3.3 --- SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.50 / Chapter 3.2.4 --- Reagents and Buffers / Chapter 3.2.4.1 --- Medium for Bacterial Culture --- p.53 / Chapter 3.2.4.2 --- Reagents for SDS-PAGE --- p.53 / Chapter 3.2.5 --- Size of Protein Molecular Weight Markers --- p.54 / Chapter 3.3 --- Results --- p.55 / Chapter 3.3.1 --- Molecular Cloning of Chicken GHR cDNA by PCR --- p.55 / Chapter 3.3.1.1 --- RT-PCR --- p.55 / Chapter 3.3.1.2 --- Subcloning --- p.56 / Chapter 3.3.1.3 --- Nucleotide Sequence Analysis --- p.57 / Chapter 3.3.2 --- Ontogeny of GHR mRNA Expression in Chicken Liver and Brain --- p.59 / Chapter 3.3.3 --- Prokaryotic Expression of Chicken GHR cDNA --- p.64 / Chapter 3.3.3.1 --- Subcloning --- p.64 / Chapter 3.3.3.2 --- Nucleotide Sequence Analysis --- p.65 / Chapter 3.3.3.3 --- Prokaryotic Expression --- p.66 / Chapter 3.4 --- Discussion --- p.68 / Chapter 3.4.1 --- Molecular Cloning of Chicken GHR cDNA by PCR --- p.68 / Chapter 3.4.2 --- Ontogeny of GHR mRNA Expression in Chicken Liver and Brain --- p.70 / Chapter 3.4.3 --- Prokaryotic Expression of Chicken GHR cDNA --- p.71 / Chapter Chapter 4 --- Molecular Cloning of Pigeon Growth Hormone Receptor Complementary DNA by Polymerase Chain Reaction and Sequence Analysis / Chapter 4.1 --- Introduction --- p.74 / Chapter 4.2 --- Materials and Methods --- p.75 / Chapter 4.2.1 --- Animals and Tissues --- p.75 / Chapter 4.2.2 --- Cloning of Pigeon GHR cDNA Main Core by PCR --- p.75 / Chapter 4.2.2.1 --- RT-PCR --- p.75 / Chapter 4.2.2.2 --- Southern Analysis of PCR Amplified Product --- p.76 / Chapter 4.2.2.3 --- Subcloning of PCR Amplified DNA Fragment --- p.76 / Chapter 4.2.3 --- Determination of 3' End Coding Sequence of Pigeon GHR cDNA --- p.76 / Chapter 4.2.4 --- Determination of 5' End Coding Sequence of Pigeon GHR cDNA --- p.79 / Chapter 4.3 --- Results / Chapter 4.3.1 --- Cloning of Pigeon GHR cDNA Main Core by PCR --- p.82 / Chapter 4.3.1.1 --- RT-PCR --- p.82 / Chapter 4.3.1.2 --- Southern Analysis --- p.83 / Chapter 4.3.1.3 --- Subcloning of Fragment M --- p.83 / Chapter 4.3.1.4 --- Restriction Digestion of Plasmid --- p.85 / Chapter 4.3.1.5 --- Nucleotide Sequence Analysis --- p.86 / Chapter 4.3.2 --- Determination of 3' End and 5' End coding Sequences of Pigeon GHR cDNA --- p.88 / Chapter 4.3.2.1 --- Random Primer Initiated RNA-PCR --- p.88 / Chapter 4.3.2.2 --- AmpliFINDER RACE --- p.88 / Chapter 4.3.2.3 --- Subcloning of Fragment 3' and Fragment 5' --- p.90 / Chapter 4.3.2.4 --- Nucleotide Sequence Analysis --- p.92 / Chapter 4.3.3 --- Nucleotide Sequence and Predicted Amino Acid Sequence of Pigeon GHR --- p.93 / Chapter 4.4 --- Discussion --- p.100 / Chapter Chapter 5 --- Attempts on Molecular Cloning of Fish Growth Hormone Receptor Complementary DNA / Chapter 5.1 --- Introduction --- p.106 / Chapter 5.2 --- Materials and Methods --- p.107 / Chapter 5.2.1 --- Animals and Tissues --- p.107 / Chapter 5.2.2 --- Design of PCR primers --- p.107 / Chapter 5.2.3 --- RT-PCR and Subcloning of PCR Amplified DNA --- p.108 / Chapter 5.2.4 --- Northern Analysis of Dace Liver RNA --- p.110 / Chapter 5.3 --- Results / Chapter 5.3.1 --- PCR --- p.111 / Chapter 5.3.2 --- Subcloning --- p.112 / Chapter 5.3.3 --- Nucleotide Sequence Analysis --- p.114 / Chapter 5.3.4 --- Northern Analysis --- p.117 / Chapter 5.4 --- Discussion --- p.119 / Chapter Chapter 6 --- General Discussion --- p.123 / References --- p.126 / Appendix --- p.135
|
32 |
Gene expression profiling of non-small cell lung cancer using cDNA microarrays /Au, Siu Kie. January 2009 (has links) (PDF)
Thesis (Ph.D.)--City University of Hong Kong, 2009. / "Submitted to Department of Biology and Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves 133-147)
|
33 |
Using antisense oligonucleotide in whole embryo culture to study gene interactions during mouse gastrulationXu, Jian, 徐堅 January 1998 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
|
34 |
Triple helix formation between a short DNA hairpin molecule and linear single stranded oligonucleotidesMei, Ivy Yuhua 08 1900 (has links)
No description available.
|
35 |
Genetic modifications of cytoplasmic thymidine kinase activity and the possible consequences on mutagen sensitivityDallol, Ashraf Rizk January 1999 (has links)
No description available.
|
36 |
Charakterisierung proteinbasierter Nanopartikel zum Transport von Oligonukleotiden für eine Rezeptor-vermittelte ZellaufnahmeBalthasar, Sabine. Unknown Date (has links)
Universiẗat, Diss., 2005--Frankfurt (Main).
|
37 |
Regulationsmechanismen des alpha-adrenerg induzierten hypertrophen Wachstums ventrikulärer HerzmuskelzellenSchreckenberg, Rolf. January 2006 (has links)
Universiẗat, Diss., 2006--Giessen.
|
38 |
Regulationsmechanismen des A-adrenerg induzierten hypertrophen Wachstums ventrikulärer HerzmuskelzellenSchreckenberg, Rolf January 1900 (has links) (PDF)
Zugl.: Giessen, Univ., Diss., 2006
|
39 |
Using antisense oligonucleotide in whole embryo culture to study gene interactions during mouse gastrulation /Xu, Jian, January 1998 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 106-115).
|
40 |
Interplay of polymer and oligonucleotide properties in the nature of antisense effectsSundaram, Sumati. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Chemical and Biochemical Engineering." Includes bibliographical references (p. 129-137).
|
Page generated in 0.0491 seconds