Spelling suggestions: "subject:"antler progeny"" "subject:"antler orogeny""
1 |
Three-Dimensional Evolution of the Early Paleozoic Western Laurentian Margin: New Insights From Detrital Zircon U-Pb Geochronology and Hf Isotope Geochemistry of the Harmony Formation of NevadaLinde, G. M., Trexler, J. H., Cashman, P. H., Gehrels, G., Dickinson, W. R. 11 1900 (has links)
Uranium-lead (U-Pb) geochronology and Hafnium (Hf) isotope geochemistry of detrital zircons of the Harmony Formation of north central Nevada provide new insights into the tectonic evolution of the Late Paleozoic western Laurentian margin. Using laser-ablation inductively coupled plasma mass spectrometry, 10 arenite samples were analyzed for U-Pb ages, and 8 of these samples were further analyzed for Hf isotope ratios. Three of the sampled units have similar U-Pb age peaks and Hf isotope ratios, including a 1.0-1.4Ga peak with epsilon Hf values of +12 to -3 and a 2.5-2.7Ga peak with epsilon Hf values of +7 to -5. The remaining seven samples differ significantly from these three, but are similar to one another; having age peaks of 1.7-1.9Ga with epsilon Hf of +10 to -20 and age peaks of 2.3-2.7Ga with epsilon Hf of +6 to -8. The data confirm the subdivision of the Harmony Formation into two petrofacies: quartzose (Harmony A) and feldspathic (Harmony B). The three samples with 1.0-1.4 and 2.5-2.7Ga peaks are the Harmony A, which originated in the central Laurentian craton. The other seven samples are the Harmony B, which originated in eastern Alberta-western Saskatchewan, north of the Harmony A source. We propose that all Harmony Formation strata were deposited near eastern Alberta and subsequently tectonically interleaved with Roberts Mountains allochthon strata. We interpret that the entire package was tectonically transported south along the western Laurentian margin and then emplaced eastward onto the craton during the Late Devonian-Early Mississippian Antler orogeny.
|
2 |
Stratigraphy, paleogeography and tectonic evolution of early Paleozoic to Triassic pericratonic strata in the northern Kootenay Arc, southeastern Canadian Cordillera, British ColumbiaKraft, Jamie L Unknown Date
No description available.
|
3 |
Structure, stratigraphy, and U-Pb zircon-titanite geochronology of the Aley carbonatite complex, northeast British Columbia: Evidence for Antler-aged orogenesis in the Foreland Belt of the Canadian CordilleraMcLeish, Duncan Forbes 26 April 2013 (has links)
The tectonic significance and age of carbonatite intrusions in the western Foreland Belt of the Canadian Cordillera are poorly constrained. Recent 1:5,000 scale field mapping of one of these carbonatite intrusions, the Aley carbonatite (NTS 94 B/5), has demonstrated that it was emplaced as a syn-kinematic sill, coeval with a major nappe-forming tectonic event. Determining the age of the Aley carbonatite therefore provides a means of directly dating tectonism related to carbonatite magmatism. A U-Pb titanite age of 365.9 +/- 2.1 Ma was obtained from the Ospika pipe, an ultramafic diatreme spatially and genetically related to the carbonatite. We interpret the Late Devonian age of the Ospika pipe to be the minimum possible age of the carbonatite and syn-magmatic nappe-forming tectonic event. The maximum possible age of the carbonatite is constrained by the Early Devonian age of the Road River Group (ca. 410 Ma), the youngest strata intruded by carbonatite dykes and involved in the nappe forming event. Our dating results for the Aley carbonatite closely correlate with U-Pb zircon and perovskite ages obtained for the Ice River carbonatite complex in the western Foreland Belt of the southern Canadian Cordillera, and support the interpretation of carbonatite intrusions of the western Foreland Belt as genetically linked components of an alkaline-carbonatitic magmatic province. Structural, stratigraphic, and geochronological data from the Aley area indicate that deformation was similar in style to, and coeval with, structures attributable to the Antler Orogeny, and are consistent with the Antler orogen having extended the length of Cordilleran margin from the southern United States to Alaska. Deformed alkaline-carbonatite intrusions that characterize continental suture zones in Africa and Tibet may provide an analogue for the Aley carbonatite and correlative alkaline-carbonatite complexes in the western Foreland Belt. / Graduate / 0372 / mcleish@uvic.ca
|
Page generated in 0.0438 seconds